Paste for cleaning of rust prior to application of inorganic composite coating on a steel designs without dismantling

2019 ◽  
Vol 24 (1) ◽  
pp. 6-14
Author(s):  
S.A. Demin ◽  
◽  
S.S. Vinogradov ◽  
A.I. Vdovin ◽  
2011 ◽  
Vol 675-677 ◽  
pp. 1197-1200
Author(s):  
Guo Jun Li ◽  
Xue Jun Cui ◽  
Rui Ming Ren

The organic-inorganic hybrid sol was prepared using an alkaline silica sol modified by acid-catalyzed hydrolytic polycondensation of methyltrimethoxysilane (MTMS) in a water-bath condition of 60oC, and then the water-based primer and topcoat were prepared through adding the pigments and nano-TiO2 suspension respectively. Through spraying and baking, the organicinorganic composite coating on the treated aluminum alloy was obtained. The optimum range of P/B (weight ratio of the pigment/binder) is determined between 1:1 and 1.5:1 by investigating the influence of the P/B of the primer on the adhesion and impact resistance of the coating. The microstructure of the coating was characterized by optical microscopy and scanning electron microscopy. The results show that there are lots of holes and lamellar structure in the primer coating and the obtained topcoat coating is uniform, smooth and dense. The coating of ~30 μm in thickness is mainly composed of three elements of silicon, aluminum and titanium, in which transition layer of ~10 μm is included. The physicochemical properties suggest that the coatings on aluminum alloy can meet the needs of finishing coating very well.


Kobunshi ◽  
1999 ◽  
Vol 48 (4) ◽  
pp. 264-264
Author(s):  
Satoshi KAWASMMA

2020 ◽  
Vol 25 (2) ◽  
pp. 26-33
Author(s):  
S.A. Demin ◽  
A.P. Petrova

Known methods for applying an inorganic composite coating are accompanied by its heat treatment at a temperature of at least 300 °C, which requires the use of furnaces. Recent developments have allowed to reduce the temperature of heat treatment to 90 °C for at least 3 hours or to 105 °C for at least 1 h, which allows the use of portable heating equipment. However, the use of any equipment with such prolonged heat treatment is not acceptable when applying corrosion protection to large structures, especially when their dismantling is impossible. The results of studies on the chemical curing of an inorganic composite coating that does not require heat treatment are presented. It is proposed to spray a hardener solution onto a composite coating having a more alkaline pH instead of heat treatment. When a hardener reacts with acidic residues of an inorganic binder on the surface of a dried coating, monosubstituted phosphates undergo a transition to poorly soluble two-and practically insoluble tri-substituted phosphates not only on the coating surface, but also on the inner surface of the pores, which leads to almost complete insolubility of the coating. Treatment of the coating with an aqueous solution of monosubstituted potassium phosphate, two-substituted potassium phosphate or potassium pyrophosphate gives the coating water resistance. The inorganic composite coating acquires a high protective ability (more than 1300 hours in a salt fog chamber) on steel parts after treatment with only aqueous solutions of mono-substituted or two-substituted potassium phosphate.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 894
Author(s):  
Weiping Du ◽  
Yingying Ding ◽  
Yang Zhang ◽  
Huifang Chen

The surface modified hydrophilic zinc sulfide nano powder was prepared by hydrothermal method, and the corresponding zinc sulfide/polyurethane organic-inorganic composite transparent coating via in-situ polymerization. The structure of ZnS Nanoparticles and organic-inorganic composite coating were characterized by Infrared Spectroscopy, X-Ray Diffraction, Laser Particle Size Analyzer and Scanning Electron Microscopy. The optical properties were measured by Ultraviolet-Visible spectrophotometer and ellipsometry. The results show that the monodisperse hydrophilic nano zinc sulfide powder with a particle size of about 70 nm can be obtained by thioglycolic acid (TGA) modification, which has good compatibility with waterborne polyurethane. Nano zinc sulfide increased the refractive index of the coating significantly and the refractive index of the coatings could be controlled in the region of 1.46–1.71 organic-inorganic composite coating by adding ZnS. When the amount of nano ZnS added was 30%, the refractive index of the hybrid coating can reach 1.71, and the transmittance was more than 90%. The cured coatings were smooth and no agglomeration between nano ZnS particles could be found. After application on the surfaces of resin lens, the coatings presented better impact resistance, which indicated that the coating has application prospects in the field of fine processing of lens’ surfaces.


Author(s):  
Yang Xi-Chen ◽  
Li Hui-Shan ◽  
Wang Yun-Shan ◽  
Ma Bing ◽  
Yi Ying-Hui

Sign in / Sign up

Export Citation Format

Share Document