Preparation and Properties of the Organic-Inorganic Composite Coating on Aluminum Alloy

2011 ◽  
Vol 675-677 ◽  
pp. 1197-1200
Author(s):  
Guo Jun Li ◽  
Xue Jun Cui ◽  
Rui Ming Ren

The organic-inorganic hybrid sol was prepared using an alkaline silica sol modified by acid-catalyzed hydrolytic polycondensation of methyltrimethoxysilane (MTMS) in a water-bath condition of 60oC, and then the water-based primer and topcoat were prepared through adding the pigments and nano-TiO2 suspension respectively. Through spraying and baking, the organicinorganic composite coating on the treated aluminum alloy was obtained. The optimum range of P/B (weight ratio of the pigment/binder) is determined between 1:1 and 1.5:1 by investigating the influence of the P/B of the primer on the adhesion and impact resistance of the coating. The microstructure of the coating was characterized by optical microscopy and scanning electron microscopy. The results show that there are lots of holes and lamellar structure in the primer coating and the obtained topcoat coating is uniform, smooth and dense. The coating of ~30 μm in thickness is mainly composed of three elements of silicon, aluminum and titanium, in which transition layer of ~10 μm is included. The physicochemical properties suggest that the coatings on aluminum alloy can meet the needs of finishing coating very well.

2012 ◽  
Vol 206 (14) ◽  
pp. 3264-3269 ◽  
Author(s):  
Zhongzhi Han ◽  
Yu Zuo ◽  
Pengfei Ju ◽  
Yuming Tang ◽  
Xuhui Zhao ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 894
Author(s):  
Weiping Du ◽  
Yingying Ding ◽  
Yang Zhang ◽  
Huifang Chen

The surface modified hydrophilic zinc sulfide nano powder was prepared by hydrothermal method, and the corresponding zinc sulfide/polyurethane organic-inorganic composite transparent coating via in-situ polymerization. The structure of ZnS Nanoparticles and organic-inorganic composite coating were characterized by Infrared Spectroscopy, X-Ray Diffraction, Laser Particle Size Analyzer and Scanning Electron Microscopy. The optical properties were measured by Ultraviolet-Visible spectrophotometer and ellipsometry. The results show that the monodisperse hydrophilic nano zinc sulfide powder with a particle size of about 70 nm can be obtained by thioglycolic acid (TGA) modification, which has good compatibility with waterborne polyurethane. Nano zinc sulfide increased the refractive index of the coating significantly and the refractive index of the coatings could be controlled in the region of 1.46–1.71 organic-inorganic composite coating by adding ZnS. When the amount of nano ZnS added was 30%, the refractive index of the hybrid coating can reach 1.71, and the transmittance was more than 90%. The cured coatings were smooth and no agglomeration between nano ZnS particles could be found. After application on the surfaces of resin lens, the coatings presented better impact resistance, which indicated that the coating has application prospects in the field of fine processing of lens’ surfaces.


2002 ◽  
Vol 18 (2) ◽  
pp. 111-125 ◽  
Author(s):  
A. G. Pedroso ◽  
D. S. Rosa ◽  
T. D. Z. Atvars

The storage of post-consumer unsaturated polyester/glass fibre composites impacts negatively on the environment due to its persistence (long lifetime of both the glass fibre and the resin) as well as the high volume/weight ratio of the residues. In this work we introduce a new approach for the recycling process of artefacts made of these polyester/glass fibre composites that involves the dispersion of the ground, not powdered, composite in raw polyester resin. Room temperature resin curing was employed. Flexural and impact tests were performed to optimize the processing conditions and the manufacturing process. Significant improvement in texture, flexural strength and impact resistance of sheets were achieved by pressing and heating the sheets at 40∞C and 50∞C during curing. The artefacts utilized in our work were post-consumer public telephone weather protector caps, which, in Brazil, are manufactured with a composite of unsaturated polyester/glass fibre. Although we used this specific artefact, the methodology can be extended to different types of post-consumer materials or industrial scraps.


2014 ◽  
Author(s):  
Ruslan R. Balokhonov ◽  
Eugen A. Schwab ◽  
Varvara A. Romanova ◽  
Aleksandr V. Zinoviev ◽  
Sergey A. Martynov

2019 ◽  
Vol 121 ◽  
pp. 04013
Author(s):  
Vladimir Sledkov ◽  
Mikhail Gelfgat ◽  
Dmitry Basovich

When selecting a casing material for fields with a high content of H2S and CO2, it is recommended to use specialized corrosion-resistant tubulars with high content of chrome of the Sanicro 29 type. The high cost of the material can be critical for the project economy. A promising approach for these problems elimination could be the application of aluminium alloy casing pipes. They are remain inert to corrosion even if the formation environment is fully saturated with H2S and/or CO2. They are also lightweight, have high strength-to-weight ratio, and thus decrease the existing tensions in the string and reduce well construction costs.


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12138-12145 ◽  
Author(s):  
Zong-wei Jia ◽  
Wan-chang Sun ◽  
Fang Guo ◽  
Ya-ru Dong ◽  
Xiao-jia Liu

Ni–Co–Al2O3 composite coatings were prepared by pulsed electrodeposition and electrophoresis–electrodeposition on aluminum alloy.


2012 ◽  
Vol 472-475 ◽  
pp. 309-312
Author(s):  
Xiao Ping Zhou ◽  
Ming Li ◽  
Xin Zhou

The microstructures and properties of Al2O3-TiB2 composite coating on the surface of the aluminum alloy by reactive spraying was studied. The influences of mechanical alloying and spraying temperature on the phase constituent and microstructure of the composite were analyzed by X-ray diffractometry(XRD) and scanning electron microscopy(SEM). The results indicate that Al2O3-TiB2 composite coating is obtained by plasma spraying using milled powder of Al,TiO2,B2O and B2O3. The coating possesses high microhardness of 1300 HV0.1.


1994 ◽  
Vol 346 ◽  
Author(s):  
S. Prabakar ◽  
R. A. Assink ◽  
N. K. Raman ◽  
C. J. Brinker

ABSTRACTHigh resolution 29Si NMR has been used to study the extent of cross condensation taking place in a hybrid organic/inorganic sol-gel system. Tetraethoxysilane (TEOS) and methyltriethoxysilane (MTEOS) sol-gels were chosen for this purpose. The sols were prepared by acid catalyzed hydrolysis of TEOS and MTEOS with a H2O/Si ratio of 0.3. 29Si NMR shows signals due to both self-condensation and cross-condensation between TEOS and MTEOS. Resonance assignments were made by comparing the positions and intensities of peaks in the spectra of single and multicomponent systems. It was found that, within experimental error, the self- and cross-condensation rates are equal and that extensive molecular level mixing takes place during the early stages of the reaction.


Sign in / Sign up

Export Citation Format

Share Document