scholarly journals BOUNDARY-VALUE PROBLEM FOR A TWO-DIMENSIONAL SECOND ORDER-TYPE EQUATION WITH DISCRETE ADDITIVE AND MULTIPLICATIVE DERIVATIVES

2021 ◽  
Vol 1 (4(68)) ◽  
pp. 61-63
Author(s):  
V. Sultanova

The present paper is concerned with the study of solutions to the boundary-value problem for a two-dimensional second order-type differential equation with a discrete additive derivative for one argument and a discrete multiplicative derivative for another argument. We will determine the general solution of the considered equation, containing some derived sequences. Further, these unknown sequences are determined using an assigned boundary condition.

Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


Author(s):  
Temirkhan Aleroev ◽  
Hedi Aleroeva ◽  
Lyudmila Kirianova

In this paper, we give a formula for computing the eigenvalues of the Dirichlet problem for a differential equation of second-order with fractional derivatives in the lower terms. We obtained this formula using the perturbation theory for linear operators. Using this formula we can write out the system of eigenvalues for the problem under consideration.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
Muhad H. Abregov ◽  
Vladimir Z. Kanchukoev ◽  
Maryana A. Shardanova

AbstractThis work is devoted to the numerical methods for solving the first-kind boundary value problem for a linear second-order differential equation with a deviating argument in minor terms. The sufficient conditions of the one-valued solvability are established, and the a priori estimate of the solution is obtained. For the numerical solution, the problem studied is reduced to the equivalent boundary value problem for an ordinary linear differential equation of fourth order, for which the finite-difference scheme of second-order approximation was built. The convergence of this scheme to the exact solution is shown under certain conditions of the solvability of the initial problem. To solve the finite-difference problem, the method of five-point marching of schemes is used.


Author(s):  
Hong Wang ◽  
Danping Yang

AbstractFractional differential equation (FDE) provides an accurate description of transport processes that exhibit anomalous diffusion but introduces new mathematical difficulties that have not been encountered in the context of integer-order differential equation. For example, the wellposedness of the Dirichlet boundary-value problem of one-dimensional variable-coefficient FDE is not fully resolved yet. In addition, Neumann boundary-value problem of FDE poses significant challenges, partly due to the fact that different forms of FDE and different types of Neumann boundary condition have been proposed in the literature depending on different applications.We conduct preliminary mathematical analysis of the wellposedness of different Neumann boundary-value problems of the FDEs. We prove that five out of the nine combinations of three different forms of FDEs that are closed by three types of Neumann boundary conditions are well posed and the remaining four do not admit a solution. In particular, for each form of the FDE there is at least one type of Neumann boundary condition such that the corresponding boundary-value problem is well posed, but there is also at least one type of Neumann boundary condition such that the corresponding boundary-value problem is ill posed. This fully demonstrates the subtlety of the study of FDE, and, in particular, the crucial mathematical modeling question: which combination of FDE and fractional Neumann boundary condition, rather than which form of FDE or fractional Neumann boundary condition, should be used and studied in applications.


Sign in / Sign up

Export Citation Format

Share Document