scholarly journals THE USE OF CARBON, HIGH-CHROMIUM STEELS FOR LINERS OF MUD PUMPS AND DRILLING RIGS

2017 ◽  
pp. 135-142
Author(s):  
M. A. Filippov ◽  
M. A. Gervasyev ◽  
G. N. Plotnikov ◽  
S. M. Nikiforova ◽  
A. S. Zhilin

The paper shows that high temperature heating (from 1 100 to 1 170 0C) for the subsequent quenching of high-chromium steels of a martensitic-carbide class 95X18 and X12MFL provides structure to the metal base, which consist of high-carbon containing martensite and residual metastable austenite with some carbides. The resulting structure has a high capacity for frictional hardening. Experiments with cold processing treatment of the analyzed steels also showed that after high-temperature quenching with subsequent cooling to -70 0C, sufficient cooling martensite is formed, which in combination with residual metastable austenite, provides an increase of abrasive wear resistance by 25 % compared to high temperature annealing.

2017 ◽  
Vol 265 ◽  
pp. 811-814
Author(s):  
S.M. Nikiforova ◽  
M.A. Filippov ◽  
A.S. Zhilin

The application of hardening heat treatment process at high temperatures (1100-1170 °C) for high-chromium steels of martensitic-carbide class 95Kh18 and Kh12MFL has been studied. Metallic substrate consisted of high-carbon martensite and residual metastable austenite with some traces of carbide has been obtained. Experiments have shown the resulting structure gains high frictional hardening capacity upon the application of heat. Sufficient amount of cooling martensite can be traced in the analyzed steel after high-temperature quenching (cooling up to the temperature of-70°С). Being combined with residual metastable austenite, it provides the increase of abrasive wear resistance by 25% compared with high temperature annealing. The influence of tempering temperature on hardness and abrasive wear resistance of analyzed steels 95Kh18 and Kh12MFL has also been determined.


Vestnik MEI ◽  
2019 ◽  
Vol 6 ◽  
pp. 58-63
Author(s):  
Konstantin V. Strogonov ◽  
◽  
Andrey A. Chaymelov ◽  

Alloy Digest ◽  
2004 ◽  
Vol 53 (2) ◽  

Abstract Nicrofer 3033 is a high-chromium austenitic material for service in hot mineral acids and mixed acids. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-508. Producer or source: VDM Technologies Corporation. Originally published April 1996, revised February 2004. See also Alloy Digest SS-687, July 1997.


Alloy Digest ◽  
2000 ◽  
Vol 49 (7) ◽  

Abstract Nirosta 4465 is a low-carbon, high-chromium alloy with nickel and molybdenum. It has good corrosion and intergranular corrosion resistance. The alloy is used for processing phosphate rock. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-797. Producer or source: ThyssenKrupp Nirosta.


Alloy Digest ◽  
1972 ◽  
Vol 21 (5) ◽  

Abstract SANDVIK 2RE10 is a high-chromium, high-nickel, extra-low-carbon austenitic stainless steel with high resistance to oxidizing media such as concentrated nitric acid, high resistance to intergranular corrosion and good structural stability. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-272. Producer or source: Sandvik. See also Alloy Digest SS-491, November 1987.


Alloy Digest ◽  
1973 ◽  
Vol 22 (7) ◽  

Abstract CANNON-MUSKEGON D-2 is a high-carbon high-chromium air-hardening cast tool steel with excellent resistance to abrasion. It is moderately machinable with excellent non-deforming characteristics. A higher silicon content is permissible in this cast steel than in AISI D2 (wrought) tool steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: TS-259. Producer or source: Cannon-Muskegon Corporation.


Alloy Digest ◽  
1982 ◽  
Vol 31 (7) ◽  

Abstract CRONIFER 2328 is a titanium-stabilized, high-chromium and high-nickel austenitic stainless steel with additions of molybdenum and copper. It exhibits good corrosion resistance against sulfuric and phosphoric acids. Also, it has good resistance against pitting and stress-corrosion cracking. Cronifer 2328 is used widely in the chemical industry for equipment and for the storage and transportation of various acids and solutions. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-411. Producer or source: Vereingte Deutsche Metallwerke AG.


Alloy Digest ◽  
1958 ◽  
Vol 7 (7) ◽  

Abstract CALITE B-29 is a high chromium-nickel heat resistant casting alloy having excellent oxidation and carburization resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-76. Producer or source: Calorizing Company.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2019 ◽  
Vol 15 (4) ◽  
pp. 308-317
Author(s):  
Mei Ling Ng ◽  
Zaidah binti Rahmat ◽  
Mohd Shahir Shamsir bin Omar

Background: Orthosiphon stamineus is a traditional medicinal plant in Southeast Asia countries with various well-known pharmacological activities such as antidiabetic, diuretics and antitumor activities. Transketolase is one of the proteins identified in the leaves of the plant and transketolase is believed able to lower blood sugar level in human through non-pancreatic mechanism. In order to understand the protein behavioral properties, 3D model of transketolase and analysis of protein structure are of obvious interest. Methods: In the present study, 3D model of transketolase was constructed and its atomic characteristics revealed. Besides, molecular dynamic simulation of the protein at 310 K and 368 K deciphered transketolase may be a thermophilic protein as the structure does not distort even at elevated temperature. This study also used the protein at 310 K and 368 K resimulated back at 310 K environment. Results: The results revealed that the protein is stable at all condition which suggest that it has high capacity to adapt at different environment not only at high temperature but also from high temperature condition to low temperature where the structure remains unchanged while retaining protein function. Conclusion: The thermostability properties of transketolase is beneficial for pharmaceutical industries as most of the drug making processes are at high temperature condition.


Sign in / Sign up

Export Citation Format

Share Document