scholarly journals A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Author(s):  
L Zareei ◽  
B Divband ◽  
A Mesbahi ◽  
M Khatamian ◽  
A Kiani ◽  
...  

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was synthesized. MTT assay was used to consider the nanocomposite safety for cell culture. The T1 and T2 relaxation times were measured using a 1.5 Tesla clinical MRI scanner. Then the corresponding relaxivities were determined.Results: The average particle diameter of the nanocomposite was 50 to 100 nm based on scanning electron microscope (SEM) image. A linear relationship between relaxation rates and the Fe concentration of the nanocomposite was obtained. The T1 and T2 relaxivities of the nanocomposite were calculated 5.413 and 1092.1 mM-1.s-1, respectively which led to the T2/T1 relaxivity ratioof 201.75.Conclusion: The high T2/T1 relaxivity ratio of the iron oxide–4A nanocomposite confirms it’s potential to act as a T2 contrast agent.

Author(s):  
L Zareei ◽  
B Divband ◽  
A Mesbahi ◽  
M Khatamian ◽  
A Kiani ◽  
...  

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was synthesized. MTT assay was used to consider the nanocomposite safety for cell culture. The T1 and T2 relaxation times were measured using a 1.5 Tesla clinical MRI scanner. Then the corresponding relaxivities were determined.Results: The average particle diameter of the nanocomposite was 50 to 100 nm based on scanning electron microscope (SEM) image. A linear relationship between relaxation rates and the Fe concentration of the nanocomposite was obtained. The T1 and T2 relaxivities of the nanocomposite were calculated 5.413 and 1092.1 mM-1.s-1, respectively which led to the T2/T1 relaxivity ratioof 201.75.Conclusion: The high T2/T1 relaxivity ratio of the iron oxide–4A nanocomposite confirms it’s potential to act as a T2 contrast agent.


2021 ◽  
Vol 11 (17) ◽  
pp. 8222
Author(s):  
Shanti Marasini ◽  
Huan Yue ◽  
Adibehalsadat Ghazanfari ◽  
Son Long Ho ◽  
Ji Ae Park ◽  
...  

Surface-coating polymers contribute to nanoparticle-based magnetic resonance imaging (MRI) contrast agents because they can affect the relaxometric properties of the nanoparticles. In this study, polyaspartic acid (PASA)-coated ultrasmall Gd2O3 nanoparticles with an average particle diameter of 2.0 nm were synthesized using the one-pot polyol method. The synthesized nanoparticles exhibited r1 and r2 of 19.1 and = 53.7 s−1mM−1, respectively, (r1 and r2 are longitudinal and transverse water–proton spin relaxivities, respectively) at 3.0 T MR field, approximately 5 and 10 times higher than those of commercial Gd-chelate contrast agents, respectively. The T1 and T2 MR images could be obtained due to an appreciable r2/r1 ratio of 2.80, indicating their potential as a dual-modal T1 and T2 MRI contrast agent.


2021 ◽  
Vol 57 (14) ◽  
pp. 1770-1773
Author(s):  
S. A. Amali S. Subasinghe ◽  
Jonathan Romero ◽  
Cassandra L. Ward ◽  
Matthew D. Bailey ◽  
Donna R. Zehner ◽  
...  

The complexes described here serve as contrast agents for magnetic resonance imaging thermometry.


2019 ◽  
Vol 58 (24) ◽  
pp. 16618-16628 ◽  
Author(s):  
Sonia L. C. Pinho ◽  
José Sereno ◽  
Antero J. Abrunhosa ◽  
Marie-Hélène Delville ◽  
João Rocha ◽  
...  

2016 ◽  
Vol 40 (11) ◽  
pp. 9507-9519 ◽  
Author(s):  
Ekta Shah ◽  
Pratik Upadhyay ◽  
Mala Singh ◽  
Mohmmad Shoab Mansuri ◽  
Rasheedunnisa Begum ◽  
...  

This study shows that multiple functionalities like drug delivery and T1–T2 dual modalities can be achieved by a proper surface architecture.


Sign in / Sign up

Export Citation Format

Share Document