scholarly journals Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds

2016 ◽  
Vol 99 (11) ◽  
pp. 8932-8945 ◽  
Author(s):  
Irene van den Berg ◽  
Didier Boichard ◽  
Mogens Sandø Lund
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 541
Author(s):  
Long Chen ◽  
Jennie E. Pryce ◽  
Ben J. Hayes ◽  
Hans D. Daetwyler

Structural variations (SVs) are large DNA segments of deletions, duplications, copy number variations, inversions and translocations in a re-sequenced genome compared to a reference genome. They have been found to be associated with several complex traits in dairy cattle and could potentially help to improve genomic prediction accuracy of dairy traits. Imputation of SVs was performed in individuals genotyped with single-nucleotide polymorphism (SNP) panels without the expense of sequencing them. In this study, we generated 24,908 high-quality SVs in a total of 478 whole-genome sequenced Holstein and Jersey cattle. We imputed 4489 SVs with R2 > 0.5 into 35,568 Holstein and Jersey dairy cattle with 578,999 SNPs with two pipelines, FImpute and Eagle2.3-Minimac3. Genome-wide association studies for production, fertility and overall type with these 4489 SVs revealed four significant SVs, of which two were highly linked to significant SNP. We also estimated the variance components for SNP and SV models for these traits using genomic best linear unbiased prediction (GBLUP). Furthermore, we assessed the effect on genomic prediction accuracy of adding SVs to GBLUP models. The estimated percentage of genetic variance captured by SVs for production traits was up to 4.57% for milk yield in bulls and 3.53% for protein yield in cows. Finally, no consistent increase in genomic prediction accuracy was observed when including SVs in GBLUP.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Alejandra Vergara-Lope ◽  
M. Reza Jabalameli ◽  
Clare Horscroft ◽  
Sarah Ennis ◽  
Andrew Collins ◽  
...  

Abstract Quantification of linkage disequilibrium (LD) patterns in the human genome is essential for genome-wide association studies, selection signature mapping and studies of recombination. Whole genome sequence (WGS) data provides optimal source data for this quantification as it is free from biases introduced by the design of array genotyping platforms. The Malécot-Morton model of LD allows the creation of a cumulative map for each choromosome, analogous to an LD form of a linkage map. Here we report LD maps generated from WGS data for a large population of European ancestry, as well as populations of Baganda, Ethiopian and Zulu ancestry. We achieve high average genetic marker densities of 2.3–4.6/kb. These maps show good agreement with prior, low resolution maps and are consistent between populations. Files are provided in BED format to allow researchers to readily utilise this resource.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Sanne van den Berg ◽  
Jérémie Vandenplas ◽  
Fred A. van Eeuwijk ◽  
Aniek C. Bouwman ◽  
Marcos S. Lopes ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
pp. 73-96 ◽  
Author(s):  
Sayantan Das ◽  
Gonçalo R. Abecasis ◽  
Brian L. Browning

Genotype imputation has become a standard tool in genome-wide association studies because it enables researchers to inexpensively approximate whole-genome sequence data from genome-wide single-nucleotide polymorphism array data. Genotype imputation increases statistical power, facilitates fine mapping of causal variants, and plays a key role in meta-analyses of genome-wide association studies. Only variants that were previously observed in a reference panel of sequenced individuals can be imputed. However, the rapid increase in the number of deeply sequenced individuals will soon make it possible to assemble enormous reference panels that greatly increase the number of imputable variants. In this review, we present an overview of genotype imputation and describe the computational techniques that make it possible to impute genotypes from reference panels with millions of individuals.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Gabriel Costa Monteiro Moreira ◽  
Clarissa Boschiero ◽  
Aline Silva Mello Cesar ◽  
James M. Reecy ◽  
Thaís Fernanda Godoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document