scholarly journals Microbial Populations, Fermentation End-Products, and Aerobic Stability of Corn Silage Treated with Ammonia or a Propionic Acid-Based Preservative

2000 ◽  
Vol 83 (7) ◽  
pp. 1479-1486 ◽  
Author(s):  
L. Kung ◽  
J.R. Robinson ◽  
N.K. Ranjit ◽  
J.H. Chen ◽  
C.M. Golt ◽  
...  
1998 ◽  
Vol 81 (8) ◽  
pp. 2185-2192 ◽  
Author(s):  
G.E. Higginbotham ◽  
S.C. Mueller ◽  
K.K. Bolsen ◽  
E.J. DePeters

2018 ◽  
Vol 39 (1) ◽  
pp. 253
Author(s):  
Marcos Rogério Oliveira ◽  
Antônio Vinícius Iank Bueno ◽  
Guilherme Fernando Mattos Leão ◽  
Mikael Neumann ◽  
Clóves Cabreira Jobim

We aimed to evaluate nutritional quality, fermentation profile, aerobic stability, and dry matter losses in corn (Zea mays) and wheat (Triticum aestivum 'BRS Umbu') silages. Treatments included uninoculated and inoculated (Lactobacillus plantarum and Pediococcus acidilactici, 1.0 × 105 UFC g-1) wheat silage, corn silage from a conventional hybrid and a transgenic hybrid. Nutritional quality and fermentation profile variables were tested in a completely randomized design. Means were compared using Tukey’s test at 5% significance. An aerobic stability trial was conducted in a factorial design with two silages (wheat × inoculated wheat; conventional hybrid corn × transgenic hybrid corn) and two temperatures (ambient temperature × controlled temperature at 24°C). Data were submitted to ANOVA and means were analyzed by the F test at 5% probability. Inoculation of wheat silage increased dry matter, organic matter, and total carbohydrates, but reduced crude protein by a dilution effect. Regarding the fermentation profile, inoculation reduced acetic acid and butyric acid content, whereas it increased propionic acid in wheat silage. Bt corn hybrid silage showed higher dry matter and lower neutral detergent fiber, whereas transgenic corn silage showed lower content of acetic acid, propionic acid, alcohol, and ammonia. Conversely, Bt hybrid silage showed higher butyric acid. Transgenic corn silage showed higher temperature than the conventional hybrid silage during aerobic exposure. Inoculated wheat silage experienced larger deterioration and dry matter losses during the aerobic stability trial. Temperature control worsened aerobic stability in all treatments, increasing dry matter losses and heating.


2021 ◽  
pp. 395-410
Author(s):  
Tânia Mara Becher Ribas ◽  
◽  
Mikael Neumann ◽  
Egon Henrique Horst ◽  
Fernando Braga Cristo ◽  
...  

The objective was to evaluate the efficiency of two bacterial inoculants, 11CFT and 11C33, with different genera of lactic acid bacteria on the chemical and fermentation composition of the silage, and the temperature and pH behavior of the silage during the feed out period. The experimental design used was randomized blocks, with three treatments: corn silage without inoculant (control); corn silage with 11CFT inoculant (consisting of strains of Lactobacillus buchneri and L. casei); and corn silage with 11C33 inoculant (consisting of strains of L. buchneri, L. plantarum and Enterococcus faecium). The use of both inoculants increased the concentration of lactic acid in the silage (22.42 g kg-1 for control against 36.00 and 33.33 g kg-1 for 11CFT and 11C33, respectively) and reduced aerobic dry matter losses. The silage treated with 11C33 obtained a higher concentration of acetic acid (17.44 g kg-1) and propionic acid (2.08 g kg-1). The 11CFT inoculant provided a lower concentration of ethanol, however, without differing from the silage with 11C33 (0.70 and 1.61 g kg-1, respectively). Even without variations in temperature and pH at silage unloading, the use of the 11C33 inoculant generated a higher concentration of acetic and propionic acid, providing better aerobic stability days after unloading. Both inoculants also improved the in situ ruminal digestibility of corn silage compared to control silage. They provide an increase in the content of lactic and propionic acids, which assist to reduce dry matter losses and ethanol production. There were no variations in temperature and pH at the silo unloading, however, the use of the 11C33 inoculant generated a higher concentration of acetic and propionic acids providing better aerobic stability after exposure to air.


1998 ◽  
Vol 81 (5) ◽  
pp. 1322-1330 ◽  
Author(s):  
L. Kung ◽  
A.C. Sheperd ◽  
A.M. Smagala ◽  
K.M. Endres ◽  
C.A. Bessett ◽  
...  

1969 ◽  
Vol 85 (3-4) ◽  
pp. 151-164
Author(s):  
Abner A. Rodríguez ◽  
José L. Martínez ◽  
Raúl Macchiavelli ◽  
Ernesto O. Riquelme

An experiment was conducted to evaluate the effect of three application rates (0,1 and 2 times the recommended rate) of a commercial additive containing a lactic acid-producing bacterial inoculant as well as plant cell walldegrading enzymes, on the microbial succession, fermentation end-products, and aerobic stability of guinea grass (Panicum maximum var. Jacq.) silage. Vegetative material was harvested at 30% dry matter (DM) and chopped into 2.5-cm pieces. At ensiling, three treatments were imposed: no additive (control), additive applied at recommended rate, and at 2x the recommended rate. Three silos per treatment were opened after 0, 2, 4, 7, 14, 28, and 56 d of fermentation, and siiage was analyzed for pH, microbial succession, chemical composition, fermentation end-products and aerobic stability. For aerobic stability determination, three silos per treatment were opened at the end of the fermentation period, and silage (400 g) was exposed to air for three days in Styrofoam containers lined with plastic. After 0 , 1 , and 3 d of aerobic exposure, silage was analyzed for pH, microbial populations (total bacteria, yeast and molds), water soluble carbohydrate content, fermentation end-products and in vitro dry matter degradability (IVDMD). Temperature was monitored daily and dry matter recovery (DMR) was calculated after 1 and 3 d of aerobic exposure. The addition of the commercial additive, applied one or two times the recommended rate, increased (P < 0.05) the lactic acid producing bacterial population and decreased (P < 0.05) conforms during early stages of the fermentation process, but did not influence the yeast and mold populations or the chemical composition of the resulting silage. Use of the inoculant-enzyme mixture also resulted in siiage with higher lactic acid content 56 days post ensiling. The silage additive did not inffuence pH, temperature, microbial populations, soluble carbohydrate content, IVDMD or DMR of guinea grass silage after exposure to air. In summary, use of the commercial additive applied at the recommended rate partially improved the fermentation characteristics of guinea grass silage, but did not enhance its aerobic stability. Increasing the application rate to twice the recommended rate did not result in better fermentation.


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 177
Author(s):  
Shengnan Sun ◽  
Zhenping Hou ◽  
Qiuzhong Dai ◽  
Duanqin Wu

The aim of this study was to investigate the effects of the forage type and chop length of ramie (Boehmeria nivea (L.) Gaud.) silage on rumen fermentation and ruminal microbiota in black goats. Sixteen Liuyang black goats (22.35 ± 2.16 kg) were fed with the roughage of corn silage or ramie silage at chop lengths of 1, 2, or 3 cm. The Chao 1 index and the observed number of microbial species differed significantly between the corn and ramie silage groups (p < 0.05); however, Firmicutes (relative proportion: 34.99–56.68%), Bacteroidetes (27.41–47.73%), and Proteobacteria (1.44–3.92%) were the predominant phyla in both groups. The relative abundance of Verrucomicrobia (0.32–0.82%) was lowest for the 2 and 3 cm chop lengths (p < 0.05) and was negatively correlated with rumen pH and propionic acid concentration (p < 0.05), but positively correlated with the ratio of acetic acid to propionic acid (p < 0.05). The ramie silage fermentation quality was highest for the 1 cm chop length, suggesting that moderate chopping produces optimal quality silage.


Sign in / Sign up

Export Citation Format

Share Document