Comprehensive analysis of neurobehavior associated with histomorphological alterations in a chronic constrictive nerve injury model through use of the CatWalk XT system

2014 ◽  
Vol 120 (1) ◽  
pp. 250-262 ◽  
Author(s):  
Chien-Yi Chiang ◽  
Meei-Ling Sheu ◽  
Fu-Chou Cheng ◽  
Chun-Jung Chen ◽  
Hong-Lin Su ◽  
...  

Object Neuropathic pain is debilitating, and when chronic, it significantly affects the patient physically, psychologically, and socially. The neurobehavior of animals used as a model for chronic constriction injury seems analogous to the neurobehavior of humans with neuropathic pain. However, no data depicting the severity of histomorphological alterations of the nervous system associated with graded changes in neurobehavior are available. To determine the severity of histomorphological alteration related to neurobehavior, the authors created a model of chronic constrictive injury of varying intensity in rats and used the CatWalk XT system to evaluate neurobehavior. Methods A total of 60 Sprague-Dawley rats, weighing 250–300 g each, were randomly assigned to 1 of 5 groups that would receive sham surgery or 1, 2, 3, or 4 ligatures of 3-0 chromic gut loosely ligated around the left sciatic nerve. Neurobehavior was assessed by CatWalk XT, thermal hyperalgesia, and mechanic allodynia before injury and periodically after injury. The nerve tissue from skin to dorsal spinal cord was obtained for histomorphological analysis 1 week after injury, and brain evoked potentials were analyzed 4 weeks after injury. Results. Significant differences in expression of nerve growth factor existed in skin, and the differences were associated with the intensity of nerve injury. After injury, expression of cluster of differentiation 68 and tumor necrosis factor–α was increased, and expression of S100 protein in the middle of the injured nerve was decreased. Increased expression of synaptophysin in the dorsal root ganglion and dorsal spinal cord correlated with the intensity of injury. The amplitude of sensory evoked potential increased with greater severity of nerve damage. Mechanical allodynia and thermal hyperalgesia did not differ significantly among treatment groups at various time points. CatWalk XT gait analysis indicated significant differences for print areas, maximum contact maximum intensity, stand phase, swing phase, single stance, and regular index, with sham and/or intragroup comparisons. Conclusions. Histomorphological and electrophysiological alterations were associated with severity of nerve damage. Subtle neurobehavioral differences were detected by the CatWalk XT system but not by mechanical allodynia or thermal hyperalgesia. Thus, the CatWalk XT system should be a useful tool for monitoring changes in neuropathic pain, especially subtle alterations.

2020 ◽  
Author(s):  
Rui Xu ◽  
Fan Yang ◽  
Lijuan Li ◽  
Xiaohong Liu ◽  
Xiaolu Lei ◽  
...  

Abstract Background: The importance of P2X purinoceptors, CB2 receptor and microRNA-124(miR-124) in spinal cord microglia to the development of neuropathic pain was demonstrated in numerous previous studies. The upregulation of P2X4 and P2X7 receptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not clear whether the expression of P2X4 and P2X7 receptors at dorsal spinal cord will be influenced by CB2 receptor or miR-124 in rats after chronic sciatic nerve injury.Methods: Chronic constriction injury (CCI) of the sciatic nerve was performed in rats to induce neuropathic pain. Tests of the mechanical withdrawal threshold (MWT) were carried out to assess the response of the paw to mechanical stimulus. The expression of miR-124, P2X4, P2X7 and CB2 receptor were detected with RT-PCR. The protein expression of P2X4, P2X7 and CB2 receptor, RhoA, ROCK1, ROCK2, p-p38MAPK and p-NF-kappaBp65 was detected with Western blotting analysis. Results: Intrathecal administration of CB2 receptor agonist AM1241 significantly attenuated CCI-induced mechanical allodynia and significantly inhibited the increased expression of P2X4 and P2X7 receptors at the mRNA and protein levels, which imply that P2X4 and P2X7 receptors expression are down-regulated by AM1241 in CCI rats. Western blot analysis showed that AM1241 suppressed the elevated expression of RhoA, ROCK1, ROCK2, p-p38MAPK and NF-κBp65 in the dorsal spinal cord induced by CCI. After administration with Y-27632 (ROCK inhibitor), SB203580 (P38MAPK inhibitor) or PDTC (NF-κB inhibitor), the levels of P2X4 and P2X7 receptors expression in the dorsal spinal cord were lower than those in CCI rats, which imply that the ROCK/P38MAPK pathway and NF-κB activation may contribute to the increased expression of P2X4 and P2X7 receptor. On the other hand, in CCI rats, AM1241 treatment evoked the increased expression of CB2 receptor and miRNA-124, which can be inhibited by intrathecal injection of CB2 receptor antagonist AM630, which indicate that the increased expression of miRNA-124 may be medicated by CB2 receptor activation. In addition, the increased expression of P2X4 and P2X7 receptors in the dorsal spinal cord of CCI rats were inhibited by miRNA-124 agomir. Furthermore, intrathecal injection of miRNA-124 agomir could efficiently inhibit the ROCK/P38MAPK pathway and NF-κB activation in CCI rats. Moreover, AM1241 treatment significantly inhibited the expression of P2X4 and P2X7 receptors, and this suppression is enhanced by pretreatment with miRNA-124 agomir. On the contrast, the inhibitory effect of AM1241 on the expression of P2X4 and P2X7 receptor can be reversed by pretreatment with miRNA-124 antagomir.Conclusions: In CCI rats, intrathecal injection of AM1241 could efficiently induce the increased expression of miRNA-124, while inhibiting the ROCK/P38MAPK pathway and NF-κB activation in dorsal spinal cord. CB2 receptor/miRNA-124 signaling induced the decreased P2X4 and P2X7 receptors expression via inhibit the ROCK/P38MAPK pathway and NF-κB activation.


2017 ◽  
Vol 31 (6) ◽  
pp. 494 ◽  
Author(s):  
Park Eun-sung ◽  
Ahn Jung-mo ◽  
Jeon Sang-min ◽  
Cho Hee-jung ◽  
Chung Ki-myung ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengnan Zhao ◽  
Xiaojiao Zhang ◽  
Xueshu Tao ◽  
Bohan Zhang ◽  
Cong Sun ◽  
...  

Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.


2007 ◽  
Vol 15 (4) ◽  
pp. 687-697 ◽  
Author(s):  
Alice Meunier ◽  
Alban Latrémolière ◽  
Elisa Dominguez ◽  
Annie Mauborgne ◽  
Stéphanie Philippe ◽  
...  

2021 ◽  
Author(s):  
Pingchuan Ma ◽  
Ru-Fan Mo ◽  
Hua-Bao Liao ◽  
Yun-Xiao Zhang ◽  
Cai-Xia Yang ◽  
...  

Abstract Background: Gut microbiota has been found involved in neuronal functions and neurological disorders. Whether and how gut microbiota impacts chronic somatic pain disorders remain elusive.Methods: Neuropathic pain was produced by different forms of injury or diseases, the chronic constriction injury (CCI) of the sciatic nerves, oxaliplatin (OXA) chemotherapy, and streptozocin (STZ)-induced diabetes in mice. Continuous feeding of antibiotics (ABX) cocktail was used to cause major depletion of the gut microbiota. Fecal microbiota, biochemical changes in the spinal cord and dorsal root ganglion (DRG), and the behaviorally expressed painful syndromes were assessed.Results: Under condition of gut microbiota depletion, CCI, OXA, or STZ treatment-induced thermal hyperalgesia or mechanical allodynia were prevented or completely suppressed. Gut microbiota depletion also prevented CCI or STZ treatment-induced glial cell activation in the spinal cord and inhibited cytokine production in DRG in OXA model. Interestingly, STZ treatment failed to induce the diabetic high blood glucose and painful hypersensitivity in animals with the gut microbiota depletion. ABX feeding starting simultaneously with CCI, OXA, or STZ treatment resulted in instant analgesia in all the animals. ABX feeding starting after establishment of the neuropathic pain in CCI- and STZ-, but not OXA-treated animals produced significant alleviation of the thermal hyeralgesia or mechanical allodynia. Transplantation of fecal bacteria from SPF mice to ABX treated mice partially restored the gut microbiota and fully rescued the behaviorally expressed neuropathic pain, of which, Akkermansia, Bacteroides, and Desulfovibrionaceae phylus may play a key role. Conclusion: This study demonstrates distinct roles of gut microbiota in the pathogenesis of chronic painful conditions with nerve injury, chemotherapy and diabetic neuropathy and supports the clinical significance of fecal bacteria transplantation.


2016 ◽  
Vol 617 ◽  
pp. 6-13 ◽  
Author(s):  
Fangting Xu ◽  
Juan Huang ◽  
Zhenghua He ◽  
Jia Chen ◽  
Xiaoting Tang ◽  
...  

2012 ◽  
Vol 3 (3) ◽  
pp. 183-184
Author(s):  
M. Richner ◽  
O.J. Bjerrum ◽  
Y. De Koninck ◽  
A. Nykjaer ◽  
C.B. Vaegter

AbstractBackground/aimsThe molecular mechanisms underlying neuropathic pain are incompletely understood, but recent data suggest that down-regulation of the chloride extruding co-transporter KCC2 in spinal cord sensory neurons is critical: Following peripheral nerve injury, activated microglia in the spinal cord release BDNF, which stimulates neuronal TrkB receptors and ultimately results in the reduction of KCC2 levels. Consequently, neuronal intracellular chloride ion concentration increases, impairing GABAA-receptor mediated inhibition. We have previously described how the receptor sortilin modulates neurotrophin signaling by facilitating anterograde transport of Trk receptors. Unpublished data further link SorCS2, another member of the Sortilins family of sorting receptors (sortilin, SorLA and SorCS1–3) to BDNF signaling by regulating presynaptic TrkB trafficking. The purpose of this study is to explore the involvement of Sortilins in neuropathic pain.MethodsWe subjected wild-type (wt), sortilin knockout (Sort1-/-) and SorCS2 knockout (SorCS2-/-) mice to the Spared Nerve Injury (SNI) model of peripheral nerve injury. Mechanical allodynia was measured by von Frey filaments using the up-down-up method and a 3-out-of-5 thresshold.ResultsAs previously described by several groups, wt mice developed significant mechanical allodynia following SNI. Interestingly however, mice lacking sortilin or SorCS2 were fully protected from development of allodynia and did not display KCC2 down-regulation following injury. In addition, a single intrathecal injection of antibodies against sortilin or SorCS2 could delay or rescue mechanical allodynia in wt SNI mice for 2-3 days. Finally, neither sortilin nor SorCS2 deficient mice responded to intrathecal injection of BDNF, in contrast to wt mice which developed transient mechanical allodynia.ConclusionWe hypothesize that sortilin and SorCS2 are involved in neuropathic pain development by regulating TrkB signaling. Alternatively, Sortilins may directly influence the regulation of KCC2 membrane levels following injury. Both hypotheses are currently being investigated by our group.


Sign in / Sign up

Export Citation Format

Share Document