scholarly journals Moderate and severe traumatic brain injury: effect of blood alcohol concentration on Glasgow Coma Scale score and relation to computed tomography findings

2015 ◽  
Vol 122 (1) ◽  
pp. 211-218 ◽  
Author(s):  
Nils Petter Rundhaug ◽  
Kent Gøran Moen ◽  
Toril Skandsen ◽  
Kari Schirmer-Mikalsen ◽  
Stine B. Lund ◽  
...  

OBJECT The influence of alcohol is assumed to reduce consciousness in patients with traumatic brain injury (TBI), but research findings are divergent. The aim of this investigation was to study the effects of different levels of blood alcohol concentration (BAC) on the Glasgow Coma Scale (GCS) scores in patients with moderate and severe TBI and to relate the findings to brain injury severity based on the admission CT scan. METHODS In this cohort study, 265 patients (age range 16–70 years) who were admitted to St. Olavs University Hospital with moderate and severe TBI during a 7-year period were prospectively registered. Of these, 217 patients (82%) had measured BAC. Effects of 4 BAC groups on GCS score were examined with ordinal logistic regression analyses, and the GCS scores were inverted to give an OR > 1. The Rotterdam CT score based on admission CT scan was used to adjust for brain injury severity (best score 1 and worst score 6) by stratifying patients into 2 brain injury severity groups (Rotterdam CT scores of 1–3 and 4–6). RESULTS Of all patients with measured BAC, 91% had intracranial CT findings and 43% had BAC > 0 mg/dl. The median GCS score was lower in the alcohol-positive patients (6.5, interquartile range [IQR] 4–10) than in the alcohol-negative patients (9, IQR 6–13; p < 0.01). No significant differences were found between alcohol-positive and alcohol-negative patients regarding other injury severity variables. Increasing BAC was a significant predictor of lower GCS score in a dose-dependent manner in age-adjusted analyses, with OR 2.7 (range 1.4–5.0) and 3.2 (range 1.5–6.9) for the 2 highest BAC groups (p < 0.01). Subgroup analyses showed an increasing effect of BAC group on GCS scores in patients with Rotterdam CT scores of 1–3: OR 3.1 (range 1.4–6.6) and 6.7 (range 2.7–16.7) for the 2 highest BAC groups (p < 0.01). No such relationship was found in patients with Rotterdam CT scores of 4–6 (p = 0.14–0.75). CONCLUSIONS Influence of alcohol significantly reduced the GCS score in a dose-dependent manner in patients with moderate and severe TBI and with Rotterdam CT scores of 1–3. In patients with Rotterdam CT scores of 4–6, and therefore more CT findings indicating increased intracranial pressure, the brain injury itself seemed to overrun the depressing effect of the alcohol on the CNS. This finding is in agreement with the assumption of many clinicians in the emergency situation.

2011 ◽  
Vol 77 (10) ◽  
pp. 1416-1419 ◽  
Author(s):  
Cherisse Berry ◽  
Eric J. Ley ◽  
Daniel R. Margulies ◽  
James Mirocha ◽  
Marko Bukur ◽  
...  

Although recent evidence suggests a beneficial effect of alcohol for patients with traumatic brain injury (TBI), the level of alcohol that confers the protective effect is unknown. Our objective was to investigate the relationship between admission blood alcohol concentration (BAC) and outcomes in patients with isolated moderate to severe TBI. From 2005 to 2009, the Los Angeles County Trauma Database was queried for all patients ≥14 years of age with isolated moderate to severe TBI and admission serum alcohol levels. Patients were then stratified into four levels based on admission BAC: None (0 mg/dL), low (0-100 mg/dL), moderate (100-230 mg/dL), and high (≥230 mg/dL). Demographics, patient characteristics, and outcomes were compared across levels. In evaluating 3794 patients, the mortality rate decreased with increasing BAC levels (linear trend P < 0.0001). In determining the relationship between BAC and mortality, multivariable logistic regression analysis demonstrated a high BAC level was significantly protective (adjusted odds ratio 0.55; 95% confidence interval: 0.38-0.8; P = 0.002). In the largest study to date, a high (≥230 mg/dL) admission BAC was independently associated with improved survival in patients with isolated moderate to severe TBI. Additional research is warranted to investigate the potential therapeutic implications.


CJEM ◽  
2016 ◽  
Vol 18 (S1) ◽  
pp. S96-S96
Author(s):  
R. Green ◽  
N. Kureshi ◽  
L. Fenerty ◽  
G. Thibault-Halman ◽  
M. Erdogan ◽  
...  

Introduction: Although alcohol use increases the risk of experiencing a traumatic brain injury (TBI), it remains unclear whether outcomes in alcohol-impaired patients are different from those of unimpaired patients. The objective of this study was to evaluate the effect of alcohol on length of stay (LOS) and mortality in patients with major TBI. Methods: Using data collected from the Nova Scotia Trauma Registry, we performed a retrospective analysis of all patients with major TBI (defined as having an abbreviated injury score (AIS) head ≥3) seen in Nova Scotia hospitals between 2002 and 2013. Patients were compared by blood alcohol concentration (BAC) at time of injury: negative (0-1.9 mmol/L), low (2-21 mmol/L), and moderate/high (≥22 mmol/L). A logistic regression model was constructed to test for outcomes and adjusted for the effects of age, gender, location, injury severity score (ISS), and BAC level. Results: In a twelve-year period, there were 4152 major TBI patients in Nova Scotia. Alcohol testing was performed in 43% of cases (80% male, mean age 44±20 years), with 48% having a positive BAC. Mean acute LOS was similar for all three BAC groups. Increasing age (odds ratio [OR]=1.01; p<0.001), high ISS (OR=4.92; p<0.001), injuries occurring outside of Halifax Regional Municipality (OR=1.72; p<0.001), and having a lower BAC level (OR = 0.99; p<0.001) independently predicted mortality. Conclusion: Our findings suggest that low BAC levels are associated with increased mortality in major TBI patients. Further study is warranted to elucidate alcohol’s mechanism in TBI outcomes.


2020 ◽  
Vol 132 (2) ◽  
pp. 552-559 ◽  
Author(s):  
Andrew Y. Powers ◽  
Mauricio B. Pinto ◽  
Oliver Y. Tang ◽  
Jia-Shu Chen ◽  
Cody Doberstein ◽  
...  

OBJECTIVETraumatic intracranial hemorrhage (tICH) is a significant source of morbidity and mortality in trauma patients. While prognostic models for tICH outcomes may assist in alerting clinicians to high-risk patients, previously developed models face limitations, including low accuracy, poor generalizability, and the use of more prognostic variables than is practical. This study aimed to construct a simpler and more accurate method of risk stratification for all tICH patients.METHODSThe authors retrospectively identified a consecutive series of 4110 patients admitted to their institution’s level 1 trauma center between 2003 and 2013. For each admission, they collected the patient’s sex, age, systolic blood pressure, blood alcohol concentration, antiplatelet/anticoagulant use, Glasgow Coma Scale (GCS) score, Injury Severity Score, presence of epidural hemorrhage, presence of subdural hemorrhage, presence of subarachnoid hemorrhage, and presence of intraparenchymal hemorrhage. The final study population comprised 3564 patients following exclusion of records with missing data. The dependent variable under study was patient death. A k-fold cross-validation was carried out with the best models selected via the Akaike Information Criterion. These models risk stratified the study partitions into grade I (< 1% predicted mortality), grade II (1%–10% predicted mortality), grade III (10%–40% predicted mortality), or grade IV (> 40% predicted mortality) tICH. Predicted mortalities were compared with actual mortalities within grades to assess calibration. Concordance was also evaluated. A final model was constructed using the entire data set. Subgroup analysis was conducted for each hemorrhage type.RESULTSCross-validation demonstrated good calibration (p < 0.001 for all grades) with a mean concordance of 0.881 (95% CI 0.865−0.898). In the authors’ final model, older age, lower blood alcohol concentration, antiplatelet/anticoagulant use, lower GCS score, and higher Injury Severity Score were all associated with greater mortality. Subgroup analysis showed successful stratification for subarachnoid, intraparenchymal, grade II–IV subdural, and grade I epidural hemorrhages.CONCLUSIONSThe authors developed a risk stratification model for tICH of any GCS score with concordance comparable to prior models and excellent calibration. These findings are applicable to multiple hemorrhage subtypes and can assist in identifying low-risk patients for more efficient resource allocation, facilitate family conversations regarding goals of care, and stratify patients for research purposes. Future work will include testing of more variables, validation of this model across institutions, as well as creation of a simplified model whose outputs can be calculated mentally.


Brain Injury ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 419-426 ◽  
Author(s):  
Ayman El-Menyar ◽  
Rafael Consunji ◽  
Mohammed Asim ◽  
Ahammed Mekkodathil ◽  
Rifat Latifi ◽  
...  

Neurosurgery ◽  
2011 ◽  
Vol 70 (3) ◽  
pp. 666-675 ◽  
Author(s):  
Stefania Mondello ◽  
Akinyi Linnet ◽  
Andras Buki ◽  
Steven Robicsek ◽  
Andrea Gabrielli ◽  
...  

Abstract Background: Brain damage markers released in cerebrospinal fluid (CSF) and blood may provide valuable information about diagnosis and outcome prediction after traumatic brain injury (TBI). Objective: To examine the concentrations of ubiquitin C-terminal hydrolase-L1 (UCH-L1), a novel brain injury biomarker, in CSF and serum of severe TBI patients and their association with clinical characteristics and outcome. Methods: This case-control study enrolled 95 severe TBI subjects (Glasgow Coma Scale [GCS] score, 8). Using sensitive UCH-L1 sandwich ELISA, we studied the temporal profile of CSF and serum UCH-L1 levels over 7 days for severe TBI patients. Results: Comparison of serum and CSF levels of UCH-L1 in TBI patients and control subjects shows a robust and significant elevation of UCH-L1 in the acute phase and over the 7-day study period. Serum and CSF UCH-L1 receiver-operating characteristic curves further confirm strong specificity and selectivity for diagnosing severe TBI vs controls, with area under the curve values in serum and CSF statistically significant at all time points up to 24 hours (P &lt; .001). The first 12-hour levels of both serum and CSF UCH-L1 in patients with GCS score of 3 to 5 were also significantly higher than those with GCS score of 6 to 8. Furthermore, UCH-L1 levels in CSF and serum appear to distinguish severe TBI survivors from nonsurvivors within the study, with nonsurvivors having significantly higher and more persistent levels of serum and CSF UCH-L1. Cumulative serum UCH-L1 levels &gt; 5.22 ng/mL predicted death (odds ratio, 4.8). Conclusion: Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI, including correlating to injury severity and survival outcome.


2021 ◽  
Vol 10 (5) ◽  
pp. 1072 ◽  
Author(s):  
Chiaki Toida ◽  
Takashi Muguruma ◽  
Masayasu Gakumazawa ◽  
Mafumi Shinohara ◽  
Takeru Abe ◽  
...  

Traumatic brain injury (TBI) is the major cause of mortality and morbidity in severely-injured patients worldwide. This retrospective nationwide study aimed to evaluate the age- and severity-related in-hospital mortality trends and mortality risks of patients with severe TBI from 2009 to 2018 to establish effective injury prevention measures. We retrieved information from the Japan Trauma Data Bank dataset between 2009 and 2018. The inclusion criteria for this study were patients with severe TBI defined as those with an Injury Severity Score ≥ 16 and TBI. In total, 31,953 patients with severe TBI (32.6%) were included. There were significant age-related differences in characteristics, mortality trend, and mortality risk in patients with severe TBI. The in-hospital mortality trend of all patients with severe TBI significantly decreased but did not improve for patients aged ≤ 5 years and with a Glasgow Coma Scale (GCS) score between 3 and 8. Severe TBI, age ≥ 65 years, fall from height, GCS score 3–8, and urgent blood transfusion need were associated with a higher mortality risk, and mortality risk did not decrease after 2013. Physicians should consider specific strategies when treating patients with any of these risk factors to reduce severe TBI mortality.


2021 ◽  
Vol 11 (8) ◽  
pp. 1044
Author(s):  
Cristina Daia ◽  
Cristian Scheau ◽  
Aura Spinu ◽  
Ioana Andone ◽  
Cristina Popescu ◽  
...  

Background: We aimed to assess the effects of modulated neuroprotection with intermittent administration in patients with unresponsive wakefulness syndrome (UWS) after severe traumatic brain injury (TBI). Methods: Retrospective analysis of 60 patients divided into two groups, with and without neuroprotective treatment with Actovegin, Cerebrolysin, pyritinol, L-phosphothreonine, L-glutamine, hydroxocobalamin, alpha-lipoic acid, carotene, DL-α-tocopherol, ascorbic acid, thiamine, pyridoxine, cyanocobalamin, Q 10 coenzyme, and L-carnitine alongside standard treatment. Main outcome measures: Glasgow Coma Scale (GCS) after TBI, Extended Glasgow Coma Scale (GOS E), Disability Rankin Scale (DRS), Functional Independence Measurement (FIM), and Montreal Cognitive Assessment (MOCA), all assessed at 1, 3, 6, 12, and 24 months after TBI. Results: Patients receiving neuroprotective treatment recovered more rapidly from UWS than controls (p = 0.007) passing through a state of minimal consciousness and gradually progressing until the final evaluation (p = 0.000), towards a high cognitive level MOCA = 22 ± 6 points, upper moderate disability GOS-E = 6 ± 1, DRS = 6 ± 4, and an assisted gait, FIM =101 ± 25. The improvement in cognitive and physical functioning was strongly correlated with lower UWS duration (−0.8532) and higher GCS score (0.9803). Conclusion: Modulated long-term neuroprotection may be the therapeutic key for patients to overcome UWS after severe TBI.


2017 ◽  
Vol 32 (5) ◽  
pp. 692-704 ◽  
Author(s):  
Camille Chesnel ◽  
Claire Jourdan ◽  
Eleonore Bayen ◽  
Idir Ghout ◽  
Emmanuelle Darnoux ◽  
...  

Objective: To evaluate the patient’s awareness of his or her difficulties in the chronic phase of severe traumatic brain injury (TBI) and to determine the factors related to poor awareness. Design/Setting/Subjects: This study was part of a larger prospective inception cohort study of patients with severe TBI in the Parisian region (PariS-TBI study). Intervention/Main measures: Evaluation was carried out at four years and included the Brain Injury Complaint Questionnaire (BICoQ) completed by the patient and his or her relative as well as the evaluation of impairments, disability and quality of life. Results: A total of 90 patient-relative pairs were included. Lack of awareness was measured using the unawareness index that corresponded to the number of discordant results between the patient and relative in the direction of under evaluation of difficulties by the patient. The only significant relationship found with lack of awareness was the subjective burden perceived by the relative (Zarit Burden Inventory) ( r = 0.5; P < 0.00001). There was no significant relationship between lack of awareness and injury severity, pre-injury socio-demographic data, cognitive impairments, mood disorders, functional independence (Barthel index), global disability (Glasgow Outcome Scale), return to work at four years or quality of life (Quality Of Life after Brain Injury scale (QOLIBRI)). Conclusion: Lack of awareness four years post severe TBI was not related to the severity of the initial trauma, sociodemographic data, the severity of impairments, limitations of activity and participation, or the patient’s quality of life. However, poor awareness did significantly influence the weight of the burden perceived by the relative.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Daniel W Spaite ◽  
Chengcheng Hu ◽  
Bentley J Bobrow ◽  
Bruce J Barnhart ◽  
Vatsal Chikani ◽  
...  

Background: In hospital-based studies, hypotension (HT, SBP <90) is more likely to occur in multisystem traumatic brain injury (MTBI) than isolated (ITBI). However, there are few EMS studies on this issue. Hypothesis: Prehospital HT is associated with differential effects in MTBI and ITBI and these effects are influenced by the severity of primary brain injury. Methods: Inclusion: TBI cases in the EPIC Study (NIH 1R01NS071049) before TBI guideline implementation (1/07-3/14). ITBI: Major TBI cases (CDC Barell Matrix Type 1) that had no injury with ICD9-based Regional Severity Score [RSS (AIS equivalent)] ≥3 in any other body region. MTBI: Type 1 TBI plus at least one non-head region injury with RSS ≥3. Results: Included were 13,435 cases [Excl: age <10 (5.9%), missing data (6.2%)]. 10,374 (77.2%) were ITBI, 3061 (22.8%) MTBI. Mortality: ITBI: 7.7% (797/10,374), MTBI: 19.2% (587/3061, p<0.0001). Prehospital HT occurred 3.5 times more often in MTBI (14.8%, 453/3061 vs 4.2%, 437/10,374; p<0.0001). Among HT cases, 40.8% (185/453) with MTBI died vs 30.9% with ITBI (135/437; p<0.0001). In the hypotensive moderate/severe TBI cohort (RSS-Head 3/4), MTBI mortality was 2.4 times higher (17.2%, 40/232) than ITBI (7.1%, 17/240, p = 0.001). However, in the hypotensive very/extremely severe TBI group (RSS-Head 5/6), mortality was almost identical in MTBI (73.4%, 141/192) and ITBI (72.1%, 116/161, p = 0.864). Conclusion: Among major TBI patients with prehospital HT, those with MTBI were much more likely to die than those with ITBI. However, this association varied dramatically with TBI severity. In mod/severe TBI cases with HT, MTBI mortality was 2.4 times higher than in ITBI. In contrast, in very/extremely severe TBI with HT, there was no identifiable mortality difference. Thus, in cases with substantial potential to survive the primary brain injury (mod/severe), outcome is markedly worse in patients with multisystem injuries. However, in very/extremely severe TBI, non-head region injuries have no apparent association with mortality. This may be because the TBI is the primary factor leading to death in these cases. The main EPIC study is evaluating whether this severity-based difference in “effect” has implications for TBI guideline treatment effectiveness.


Sign in / Sign up

Export Citation Format

Share Document