scholarly journals Gamma oscillations in the somatosensory thalamus of a patient with a phantom limb: case report

2018 ◽  
Vol 129 (4) ◽  
pp. 1048-1055
Author(s):  
Diellor Basha ◽  
Jonathan O. Dostrovsky ◽  
Suneil K. Kalia ◽  
Mojgan Hodaie ◽  
Andres M. Lozano ◽  
...  

The amputation of an extremity is commonly followed by phantom sensations that are perceived to originate from the missing limb. The mechanism underlying the generation of these sensations is still not clear although the development of abnormal oscillatory bursting in thalamic neurons may be involved. The theory of thalamocortical dysrhythmia implicates gamma oscillations in phantom pathophysiology although this rhythm has not been previously observed in the phantom limb thalamus. In this study, the authors report the novel observation of widespread 38-Hz gamma oscillatory activity in spike and local field potential recordings obtained from the ventral caudal somatosensory nucleus of the thalamus (Vc) of a phantom limb patient undergoing deep brain stimulation (DBS) surgery. Interestingly, microstimulation near tonically firing cells in the Vc resulted in high-frequency, gamma oscillatory discharges coincident with phantom sensations reported by the patient. Recordings from the somatosensory thalamus of comparator groups (essential tremor and pain) did not reveal the presence of gamma oscillatory activity.

2007 ◽  
Vol 98 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Jay Spampanato ◽  
Istvan Mody

Network activity in the 200- to 600-Hz range termed high-frequency oscillations (HFOs) has been detected in epileptic tissue from both humans and rodents and may underlie the mechanism of epileptogenesis in experimental rodent models. Slower network oscillations including theta and gamma oscillations as well as ripples are generated by the complex spike timing and interactions between interneurons and pyramidal cells of the hippocampus. We determined the activity of CA3 pyramidal cells, stratum oriens lacunosum-moleculare (O-LM) and s. radiatum lacunosum-moleculare (R-LM) interneurons during HFO in the in vitro low-Mg2+ model of epileptiform activity in GIN mice. In these animals, interneurons can be identified prior to cell-attached recordings by the expression of green-fluorescent protein (GFP). Simultaneous local field potential recordings from s. pyramidale and on-cell recordings of individual interneurons and principal cells revealed three primary firing behaviors of the active cells: 36% of O-LM interneurons and 60% of pyramidal cells fired action potentials at high frequencies during the HFO. R-LM interneurons were biphasic in that they fired at high frequency at the beginning of the HFO but stopped firing before its end. When considering only the highest frequency component of the oscillations most pyramidal cells fired on the rising phase of the oscillation. These data provide evidence for functional distinction during HFOs within otherwise homogeneous groups of O-LM interneurons and pyramidal cells.


1998 ◽  
Vol 80 (3) ◽  
pp. 1495-1513 ◽  
Author(s):  
Igor Timofeev ◽  
François Grenier ◽  
Mircea Steriade

Timofeev, Igor, François Grenier, and Mircea Steriade. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol. 80: 1495–1513, 1998. In the preceding papers of this series, we have analyzed the cellular patterns and synchronization of neocortical seizures occurring spontaneously or induced by electrical stimulation or cortical infusion of bicuculline under a variety of experimental conditions, including natural states of vigilance in behaving animals and acute preparations under different anesthetics. The seizures consisted of two distinct components: spike-wave (SW) or polyspike-wave (PSW) at 2–3 Hz and fast runs at 10–15 Hz. Because the thalamus is an input source and target of cortical neurons, we investigated here the seizure behavior of thalamic reticular (RE) and thalamocortical (TC) neurons, two major cellular classes that have often been implicated in the generation of paroxysmal episodes. We performed single and dual simultaneous intracellular recordings, in conjunction with multisite field potential and extracellular unit recordings, from neocortical areas and RE and/or dorsal thalamic nuclei under ketamine-xylazine and barbiturate anesthesia. Both components of seizures were analyzed, but emphasis was placed on the fast runs because of their recent investigation at the cellular level. 1) The fast runs occurred at slightly different frequencies and, therefore, were asynchronous in various cortical neuronal pools. Consequently, dorsal thalamic nuclei, although receiving convergent inputs from different neocortical areas involved in seizure, did not express strongly synchronized fast runs. 2) Both RE and TC cells were hyperpolarized during seizure episodes with SW/PSW complexes and relatively depolarized during the fast runs. As known, hyperpolarization of thalamic neurons deinactivates a low-threshold conductance that generates high-frequency spike bursts. Accordingly, RE neurons discharged prolonged high-frequency spike bursts in close time relation with the spiky component of cortical SW/PSW complexes, whereas they fired single action potentials, spike doublets, or triplets during the fast runs. In TC cells, the cortical fast runs were reflected as excitatory postsynaptic potentials appearing after short latencies that were compatible with monosynaptic activation through corticothalamic pathways. 3) The above data suggested the cortical origin of these seizures. To further test this hypothesis, we performed experiments on completely isolated cortical slabs from suprasylvian areas 5 or 7 and demonstrated that electrical stimulation within the slab induces seizures with fast runs and SW/PSW complexes, virtually identical to those elicited in intact-brain animals. The conclusion of all papers in this series is that complex seizure patterns, resembling those described at the electroencephalogram level in different forms of clinical seizures with SW/PSW complexes and, particularly, in the Lennox-Gastaut syndrome of humans, are generated in neocortex. Thalamic neurons reflect cortical events as a function of membrane potential in RE/TC cells and degree of synchronization in cortical neuronal networks.


2009 ◽  
Vol 101 (2) ◽  
pp. 789-802 ◽  
Author(s):  
M. Weinberger ◽  
W. D. Hutchison ◽  
A. M. Lozano ◽  
M. Hodaie ◽  
J. O. Dostrovsky

Rest tremor is one of the main symptoms in Parkinson's disease (PD), although in contrast to rigidity and akinesia, the severity of the tremor does not correlate well with the degree of dopamine deficiency or the progression of the disease. Studies suggest that akinesia in PD patients is related to abnormal increased beta (15–30 Hz) and decreased gamma (35–80 Hz) synchronous oscillatory activity in the basal ganglia. Here we investigated the dynamics of oscillatory activity in the subthalamic nucleus (STN) during tremor. We used two adjacent microelectrodes to simultaneously record neuronal firing and local field potential (LFP) activity in nine PD patients who exhibited resting tremor during functional neurosurgery. We found that neurons exhibiting oscillatory activity at tremor frequency are located in the dorsal region of STN, where neurons with beta oscillatory activity are observed, and that their activity is coherent with LFP oscillations in the beta frequency range. Interestingly, in 85% of the 58 sites examined, the LFP exhibited increased oscillatory activity in the low gamma frequency range (35–55 Hz) during periods with stronger tremor. Furthermore, in 17 of 26 cases where two LFPs were recorded simultaneously, their coherence in the gamma range increased with increased tremor. When averaged across subjects, the ratio of the beta to gamma coherence was significantly lower in periods with stronger tremor compared with periods of no or weak tremor. These results suggest that resting tremor in PD is associated with an altered balance between beta and gamma oscillations in the motor circuits of STN.


2015 ◽  
Vol 6 (1) ◽  
pp. 198-207 ◽  
Author(s):  
E. Garcia-Rill ◽  
B. Luster ◽  
S. D’Onofrio ◽  
S. Mahaffey

AbstractThis review highlights the most important discovery in the reticular activating system (RAS) in the last 10 years, the manifestation of gamma (γ) band activity in cells of the RAS, especially in the pedunculopontine nucleus (PPN), which is in charge of the high frequency states of waking and rapid eye movement sleep. This discovery is critical to understanding the modulation of movement by the RAS and how it sets the background over which we generate voluntary and triggered movements. The presence of γ band activity in the RAS is proposed to participate in the process of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. Early findings using stimulation of this region to induce arousal, and also to elicit stepping, are placed in this context. This finding also helps explain the novel use of PPN deep brain stimulation for the treatment of Parkinson’s disease, although considerable work remains to be done.


2020 ◽  
Author(s):  
Marco Heerdegen ◽  
Monique Zwar ◽  
Denise Franz ◽  
Valentin Neubert ◽  
Franz Plocksties ◽  
...  

AbstractBackgroundDeep brain stimulation (DBS) of the globus pallidus internus (GPi) is considered to be the most relevant therapeutic option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the GPi, possibly resulting in thalamic disinhibition. The mechanisms of GPi-DBS are far from understood. Hypotheses range from an overall silencing of target nuclei (due to e.g. depolarisation block), via differential alterations in thalamic firing, to disruption of oscillatory activity in the β-range. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown.ObjectiveWe hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal network function. We aimed to test this hypothesis in the dtsz-hamster, an animal model of inherited generalised, paroxysmal dystonia.MethodsHamsters (dtsz-dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes targeting the entopeduncular nucleus (EPN, equivalent of human GPi). DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 hours. Synaptic cortico-striatal field potential responses, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurons were subsequently recorded in brain slice preparations obtained from these animals immediately after EPN-DBS, to gauge synaptic responsiveness of cortico-striatal projections, their inhibitory control, and striatal neuronal excitability.ResultsDBS increased cortico-striatal responses in slices from control, but not dystonic animals. Inhibitory control of these responses, in turn, was differentially affected: DBS increased inhibitory control in dystonic, and decreased it in healthy tissue. A modulation of presynaptic mechanisms is likely involved, as mEPSC frequency was reduced strongly in dystonic, and less prominently in healthy tissues, while cellular properties of medium-spiny neurons remained unchanged.ConclusionDBS leads to dampening of cortico-striatal communication with restored inhibitory tone.


TecnoLógicas ◽  
2020 ◽  
Vol 23 (49) ◽  
pp. 11-32
Author(s):  
Sarah Valderrama-Hincapié ◽  
Sebastián Roldán-Vasco ◽  
Sebastián Restrepo-Agudelo ◽  
Frank Sánchez-Restrepo ◽  
William D. Hutchison ◽  
...  

Deep Brain Stimulation (DBS) has been successfully used to treat patients with Parkinson’s Disease. DBS employs an electrode that regulates the oscillatory activity of the basal ganglia, such as the subthalamic nucleus (STN). A critical point during the surgical implantation of such electrode is the precise localization of the target. This is done using presurgical images, stereotactic frames, and microelectrode recordings (MER). The latter allows neurophysiologists to visualize the electrical activity of different structures along the surgical track, each of them with well-defined variations in the frequency pattern; however, this is far from an automatic or semi-automatic method to help these specialists make decisions concerning the surgical target. To pave the way to automation, we analyzed three frequency bands in MER signals acquired from 11 patients undergoing DBS: beta (13-40 Hz), gamma (40-200 Hz), and high-frequency oscillations (HFO – 201-400 Hz). In this study, we propose and assess five indexes in order to detect the STN: variations in autoregressive parameters and their derivative along the surgical track, the energy of each band calculated using the Yule-Walker power spectral density, the high-to-low (H/L) ratio, and its derivative. We found that the derivative of one parameter of the beta band and the H/L ratio of the HFO/gamma bands produced errors in STN targeting like those reported in the literature produced by image-based methods (<2 mm). Although the indexes introduced here are simple to compute and could be applied in real time, further studies must be conducted to be able to generalize their results.


2013 ◽  
Vol 110 (6) ◽  
pp. 1333-1345 ◽  
Author(s):  
Iain Stitt ◽  
Edgar Galindo-Leon ◽  
Florian Pieper ◽  
Gerhard Engler ◽  
Andreas K. Engel

In the superior colliculus (SC), visual afferent inputs from various sources converge in a highly organized way such that all layers form topographically aligned representations of contralateral external space. Despite this anatomical organization, it remains unclear how the layer-specific termination of different visual input pathways is reflected in the nature of visual response properties and their distribution across layers. To uncover the physiological correlates underlying the laminar organization of the SC, we recorded multiunit and local field potential activity simultaneously from all layers with dual-shank multichannel linear probes. We found that the location of spatial receptive fields was strongly conserved across all visual responsive layers. There was a tendency for receptive field size to increase with depth in the SC, with superficial receptive fields significantly smaller than deep receptive fields. Additionally, superficial layers responded significantly faster than deeper layers to flash stimulation. In some recordings, flash-evoked responses were characterized by the presence of gamma oscillatory activity (40–60 Hz) in multiunit and field potential signals, which was strongest in retinorecipient layers. While SC neurons tended to respond only weakly to full-field drifting gratings, we observed very similar oscillatory responses to the offset of grating stimuli, suggesting gamma oscillations are produced following light offset. Oscillatory spiking activity was highly correlated between horizontally distributed neurons within these layers, with oscillations temporally locked to the stimulus. Together, visual response properties provide physiological evidence reflecting the laminar-specific termination of visual afferent pathways in the SC, most notably characterized by the oscillatory entrainment of superficial neurons.


2020 ◽  
Author(s):  
M Hazime ◽  
M Alasoadura ◽  
R Lamtahri ◽  
P Quilichini ◽  
J Leprince ◽  
...  

AbstractDays and weeks after an ischemic stroke, the peri-infarct area adjacent to the necrotic tissue exhibits very intense synaptic reorganization aimed at regaining lost functions. In order to enhance functional recovery, it is important to understand the mechanisms supporting neural repair and neuroplasticity in the cortex surrounding the lesion. Brain oscillations of the local field potential (LFP) are rhythmic fluctuations of neuronal excitability aimed at synchronizing neuronal activity to organize information processing and plasticity. Although the oscillatory activity of the brain has been probed after stroke in both animals and humans using electroencephalography (EEG), the latter is ineffective to precisely map the oscillatory changes in the peri-infarct zone where synaptic plasticity potential is high. Here, we worked on the hypothesis that brain oscillatory system is altered in the surviving peri-infarct cortex, which may slow down functional repair and reduce the capacity to recovery. In order to document the relevance of this hypothesis, oscillatory power was measured at various distances from the necrotic core at 7 and 21 days after a permanent cortical ischemia induced in mice. Delta and theta oscillations remained at a normal power in the peri-infarct cortex, in contrast to gamma oscillations that displayed a rapid decrease, the closer we get to the lesion core. A broadband increase of power was also observed in the homotopic contralateral sites. Thus, the proximal peri-infarct cortex could become a target of therapeutic interventions aimed at correcting the oscillatory regimen. These results argue for the usefulness of therapeutic intervention aimed at boosting gamma oscillations in order to improve post-stroke functional recovery.


2007 ◽  
Vol 98 (6) ◽  
pp. 3525-3537 ◽  
Author(s):  
S. Li ◽  
G. W. Arbuthnott ◽  
M. J. Jutras ◽  
J. A. Goldberg ◽  
D. Jaeger

Deep brain stimulation (DBS) is an effective treatment of Parkinson's disease (PD) for many patients. The most effective stimulation consists of high-frequency biphasic stimulation pulses around 130 Hz delivered between two active sites of an implanted depth electrode to the subthalamic nucleus (STN-DBS). Multiple studies have shown that a key effect of STN-DBS that correlates well with clinical outcome is the reduction of synchronous and oscillatory activity in cortical and basal ganglia networks. We hypothesized that antidromic cortical activation may provide an underlying mechanism responsible for this effect, because stimulation is usually performed in proximity to cortical efferent pathways. We show with intracellular cortical recordings in rats that STN-DBS did in fact lead to antidromic spiking of deep layer cortical neurons. Furthermore, antidromic spikes triggered a dampened oscillation of local field potentials in cortex with a resonant frequency around 120 Hz. The amplitude of antidromic activation was significantly correlated with an observed suppression of slow wave and beta band activity during STN-DBS. These findings were seen in ketamine-xylazine or isoflurane anesthesia in both normal and 6-hydroxydopamine (6-OHDA)–lesioned rats. Thus antidromic resonant activation of cortical microcircuits may make an important contribution toward counteracting the overly synchronous and oscillatory activity characteristic of cortical activity in PD.


Sign in / Sign up

Export Citation Format

Share Document