Electromyographic assessment of condylar screw placement during occipitocervical fusion

2021 ◽  
pp. 1-10
Author(s):  
Denmark Mugutso ◽  
Charles Warnecke ◽  
Paolo Bolognese ◽  
Marat V. Avshalumov

OBJECTIVE This is a retrospective study of a series of occipitocervical fusion procedures with condylar screw fixation in which the authors investigated the utility of electromyography (EMG, free-running and triggered) as a reliable tool in assessing the positioning of condylar screws. This series consisted of 197 patients between 15 and 60 years of age who presented with craniocervical instability, and who were treated between October 2014 and December 2017. METHODS Intraoperative free-running EMG was observed at the placement of condylar screws, as well as at realigning of the spine. After placement the condylar screws were stimulated electrically, and the thresholds were recorded. CT scans were obtained intraoperatively soon after screw stimulation, and the results were analyzed by the surgeon in real time. Free-running EMG results and triggered EMG thresholds were tabulated, and the minimum acceptable threshold was established. RESULTS Intraoperative free-running EMG and triggered EMG were able to correlate alerts with condylar screw placement accurately. A triggered EMG threshold of 2.7 mA was found to be a minimum acceptable threshold. A combination criterion of free-running EMG and triggered EMG alerts was found to enable accurate assessment of condylar screw positioning and placement. CONCLUSIONS Intraoperative free-running EMG and triggered EMG were both found to be invaluable utilities in assessing the placement and positioning of condylar screws. Stimulation thresholds below 2.7 mA correlated with a superior or anterior condylar breach. Thresholds in the 2.7-mA to 9.0-mA range were generally acceptable but warranted additional inspection by the surgeon. Threshold values above 9.0 mA corresponded with solid condylar screw placement.

1996 ◽  
Vol 85 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Christopher G. Paramore ◽  
Curtis A. Dickman ◽  
Volker K. H. Sonntag

✓ Posterior transarticular screw fixation of the C1–2 complex has become an accepted method of rigid internal fixation for patients requiring posterior C1–2 fusion. The principal limitation of this procedure is the location of the vertebral artery, because an anomalous position may prohibit screw placement. In this study, a consecutive series of computerized tomography (CT) scans was reviewed, and the suitability of each patient for transarticular screw fixation was evaluated. All of the fine-slice axial C1–2 CT scans and reconstructions performed on a spiral scanner over 2 years were reviewed. A novel screw trajectory reconstruction was designed to visualize the potential path of a transarticular screw in the plane of the reconstruction. Scans were reviewed for bone anatomy and the position of the transverse foramen. Seventeen (18%) of 94 patients had a high-riding transverse foramen on at least one side of the C-2 vertebra that would prohibit the placement of transarticular screws. The left side was involved in nine patients and the right in five. Three patients had bilateral anomalies. The mean age of the group with anomalies (35.9 years, range 10–76) was not significantly different from the overall mean age (35.7 years, range 6–94). An additional five patients (5%) were considered to have anatomy in which screw placement was feasible but risky. On the basis of these data, it is postulated that 18% to 23% of patients may not be suitable candidates for posterior C1–2 transarticular screw fixation on at least one side.


ACS Omega ◽  
2021 ◽  
Author(s):  
Ilka Engelmann ◽  
Enagnon Kazali Alidjinou ◽  
Judith Ogiez ◽  
Quentin Pagneux ◽  
Sana Miloudi ◽  
...  

2022 ◽  
Vol 3 (3) ◽  

BACKGROUND Posterior atlantoaxial dislocations (i.e., complete anterior odontoid dislocation) without C1 arch fractures are a rare hyperextension injury most often found in high-velocity trauma patients. Treatment options include either closed or open reduction and optional spinal fusion to address atlantoaxial instability due to ligamentous injury. OBSERVATIONS A 60-year-old male was struck while on his bicycle by a truck and sustained an odontoid dislocation without C1 arch fracture. Imaging findings additionally delineated a high suspicion for craniocervical instability. The patient had neurological issues due to both a head injury and ischemia secondary to an injured vertebral artery. He was stabilized and transferred to our facility for definitive neurosurgical care. LESSONS The patient underwent a successful transoral digital closed reduction and posterior occipital spinal fusion via a fiducial-based transcondylar, C1 lateral mass, C2 pedicle, and C3 lateral mass construct. This unique reduction technique has not been recorded in the literature before and avoided potential complications of overdistraction and the need for odontoidectomy. Furthermore, the use of bone fiducials for navigated screw fixation at the craniocervical junction is a novel technique and recommended particularly for placement of technically demanding transcondylar screws and C2 pedicle screws where pars anatomy is potentially unfavorable.


2018 ◽  
Vol 16 (4) ◽  
pp. E121-E121 ◽  
Author(s):  
Corey T Walker ◽  
Jakub Godzik ◽  
David S Xu ◽  
Nicholas Theodore ◽  
Juan S Uribe ◽  
...  

Abstract Lateral interbody fusion has distinct advantages over traditional posterior approaches. When adjunctive percutaneous pedicle screw fixation is required, placement from the lateral decubitus position theoretically increases safety and improves operative efficiency by obviating the need for repositioning. However, safe cannulation of the contralateral, down-side pedicles remains technically challenging and often prohibitive. In this video, we present the case of a 59-yr-old man with refractory back pain and bilateral lower extremity radiculopathy that was worse on the left than right side. The patient provided written informed consent before undergoing treatment. We performed minimally invasive single-position lateral interbody fusion with robotic (ExcelsiusGPS, Globus Medical Inc, Audubon, Pennsylvania) bilateral percutaneous pedicle screw fixation for the treatment of asymmetric disc degeneration, dynamic instability, and left paracentral disc herniation with corresponding stenosis at the L3-4 level. A left-sided minimally invasive transpsoas lateral interbody graft was placed with fluoroscopic guidance. Without changing the position of the patient or breaking the sterile field, an intraoperative cone-beam computed tomography image was obtained for navigational screw placement with stereotactic trackers in the iliac spine. Screw trajectories were planned using the robotic navigation software and were placed percutaneously in the bilateral L3 and L4 pedicles using the robotic arm. Concomitant lateral fluoroscopy may be used if desired to ensure the fidelity of the robotic guidance. The patient recovered well postoperatively and was discharged home within 36 h, without complication. Single-position lateral interbody fusion and percutaneous pedicle screw fixation can be accomplished using robotic-assisted navigation and pedicle screw placement. Used with permission from Barrow Neurological Institute.


2021 ◽  
Author(s):  
Pamela Poggi ◽  
Emilia Fiorini ◽  
Daniela Tonoli ◽  
Francesca Ioele ◽  
Eric John Parker ◽  
...  

Abstract Objectives/Scope This paper presents an innovative web tool developed for the seismic monitoring of critical infrastructure. As an example, we describe an application for the ENI offshore facilities, Jangkrik and Merakes Fields Development, offshore Indonesia. Methods, Procedures, Process The system monitors reported seismic activity in a project area, and issues warnings when earthquakes detected may have directly or indirectly impacted facilities. Notifications allow the owner to optimize decisions regarding post-earthquake asset surveys and maintenance, avoiding the need for inspections in areas not significantly affected. A system of email alerts and a web based GIS platform provide the end-user with a tool to control its own assets. Results, Observations, Conclusions The purpose of the tool is to indirectly monitor earthquakes in an area and identify those which may have damaged the Oil and Gas facilities of interest. This identification requires accurate near real-time earthquake data such as date, time, location, magnitude, and focal depth. To this end, the system retrieves earthquake data from a qualified set of public seismic agencies. The system computes the expected values of shaking at the specific offshore facilities (platforms, subsea structures, pipelines, etc.). Calculations are based on sets of Ground Motion Prediction Equations (GMPEs) selected to match the seismotectonic environment. The expected values of seismic acceleration generated by an earthquake are compared with threshold values and a warning message is issued to the facilities supervisors when the ground acceleration exceeds design values. Threshold values related to secondary seismic effects (e.g., seismically induced landslides, debris flow) which could affect facilities integrity are also considered in the alert system. Threshold values are defined considering project seismic and geohazard documents, to summarize strong ground motion parameters that could potentially trigger damaging seismic geohazards, and project design documents to collect all data about seismic design of the assets. Monitoring intervals are defined based on the documentation screening. Several alarm levels are selected, based on the potential severity of earthquake effects. The more severe levels of ground motion, with high damage potential, can trigger recommendation for inspection. Novel/Additive Information Asset integrity and safety are key drivers in the offshore petroleum industry. Safety performance with respect to earthquakes is a fundamental issue in all seismic prone areas. The seismic alert system presented highlights, in near real time, earthquakes that are potentially critical for structures in an Oil and Gas field. This allows the owners to make quick decisions and plan necessary intervention regarding assets affected directly or indirectly by earthquakes. Exploiting the wide background of knowledge in engineering and geoscience and the modern availability of global earthquake data, the tool can provide useful assistance in managing asset integrity, regardless of the availability of local seismic networks or strong motion stations.


Sign in / Sign up

Export Citation Format

Share Document