scholarly journals Surgical anatomy of supratentorial midline lesions

2005 ◽  
Vol 18 (6) ◽  
pp. 1-9 ◽  
Author(s):  
M. Gazi Yaşargil ◽  
Uğur Türe ◽  
Dianne C. H. Yaşargil ¸

Object In this paper the authors correlate the surgical aspects of deep median and paramedian supratentorial lesions with the connective fiber systems of the white matter of the brain. Methods The cerebral hemispheres of 10 cadaveric brains were dissected in a mediolateral direction by using the fiber dissection technique, corresponding to the surgical approach. Conclusions This study illuminates the delicacy of the intertwined and stratified fiber laminae of the white matter, and establishes that these structures can be preserved at surgical exploration in patients.

2017 ◽  
Vol 14 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Alexander Verhaeghe ◽  
Thomas Decramer ◽  
Wim Naets ◽  
Wim Van Paesschen ◽  
Johannes van Loon ◽  
...  

AbstractBACKGROUNDPosterior quadrant disconnection can be highly effective in the surgical treatment of selected cases of refractory epilepsy. The technique aims to deafferent extensive areas of epileptogenic posterior cortex from the rest of the brain by isolating the temporoparietooccipital cortex.OBJECTIVETo describe this procedure and relevant white matter tracts with a specific emphasis on the extent of callosotomy in an anatomic study.METHODSTwenty hemispheres were dissected according to Klingler's fiber dissection technique illustrating the peri-insular (temporal stem, superior longitudinal fasciculus, corona radiata) and mesial disconnection (mesiotemporal cortex, cingulum, and corpus callosum).RESULTSExtensive white matter tract disconnection is obtained after posterior quadrant disconnection. Callosal fibers connecting the anterior most part of the parietal cortex invariably ran through the isthmus of the corpus callosum and need to be disconnected, while frontal lobe connections including the corticospinal tract and the anterior two-thirds of the corpus callosum are spared during the procedure.CONCLUSIONOur findings suggest the involvement of both the splenium and the isthmus in interhemispheric propagation in posterior cortex epilepsies. Sectioning the total extent of the posterior one-third of the corpus callosum might therefore be necessary to achieve optimal outcomes in posterior quadrant epilepsy surgery.


Neurosurgery ◽  
2004 ◽  
Vol 55 (5) ◽  
pp. 1174-1184 ◽  
Author(s):  
Diedrik Peuskens ◽  
Johannes van Loon ◽  
Frank Van Calenbergh ◽  
Raymond van den Bergh ◽  
Jan Goffin ◽  
...  

Abstract OBJECTIVE: The white matter structure of the anterior temporal lobe and the frontotemporal region is complex and not well appreciated from the available neurosurgical literature. The fiber dissection method is an excellent means of attaining a thorough knowledge of the three-dimensional structure of the white matter tracts. This study was performed to demonstrate the usefulness of the dissection technique in understanding the white matter anatomy and the effects of current surgical approaches on the subcortical structure of the region. METHODS: Seventeen brain specimens obtained at routine autopsy were dissected by use of Klingler's fiber dissection technique after preparation by fixation and freezing. The dissections were performed with an operating microscope and followed a stepwise pattern of progressive white matter dissection. RESULTS: The dissection is described in an orderly fashion showing the white matter tracts of the anterior temporal lobe and the frontotemporal region. An insight is gained into the three-dimensional course of the anterior loop of the optic radiation, the temporal stem, the anterior commissure, and the ansa peduncularis. CONCLUSION: The anterior temporal lobe and the frontotemporal region contain several important white matter tracts that can be uniquely understood by performing a white matter dissection of the region. Surgical procedures on the anterior temporal lobe differ substantially as to their repercussions on the subcortical white matter tract anatomy, as shown by the findings in this study.


2015 ◽  
Vol 11 (2) ◽  
pp. 274-305 ◽  
Author(s):  
Kaan Yagmurlu ◽  
Alexander L Vlasak ◽  
Albert L Rhoton

Abstract BACKGROUND The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. OBJECTIVE To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. METHODS Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. RESULTS The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. CONCLUSION An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.


2013 ◽  
Vol 10 (2) ◽  
pp. 294-304 ◽  
Author(s):  
Carlos Alarcon ◽  
Matteo de Notaris ◽  
Kenneth Palma ◽  
Guadalupe Soria ◽  
Alessandro Weiss ◽  
...  

Abstract BACKGROUND: Different strategies have been used to study the fiber tract anatomy of the human brain in vivo and ex vivo. Nevertheless, the ideal method to study white matter anatomy has yet to be determined because it should integrate information obtained from multiple sources. OBJECTIVE: We developed an anatomic method in cadaveric specimens to study the central core of the cerebrum combining traditional white matter dissection with high-resolution 7-T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system. METHODS: Ten cerebral hemispheres were prepared using the traditional Klingler technique. Before dissection, a structural ultrahigh magnetic field 7-T MRI study was performed on each hemisphere specifically prepared with surface fiducials for neuronavigation. The dissection was then performed from the medial hemispheric surface using the classic white fiber dissection technique. During each step of the dissection, the correlation between the anatomic findings and the 7-T MRI was evaluated with the neuronavigation system. RESULTS: The anatomic study was divided in 2 stages: diencephalic and limbic. The diencephalic stage included epithalamic, thalamic, hypothalamic, and subthalamic components. The limbic stage consisted of extending the dissection to complete the Papez circuit. The detailed information given by the combination of both methods allowed us to identify and validate the position of fibers that may be difficult to appreciate and dissect (ie, the medial forebrain bundle). CONCLUSION: The correlation of high-definition 7-T MRI and the white matter dissection technique with neuronavigation significantly improves the understanding of the structural connections in complex areas of the human cerebrum.


Neurosurgery ◽  
2000 ◽  
Vol 47 (2) ◽  
pp. 417-427 ◽  
Author(s):  
Uğur Türe ◽  
M. Gazi Yaşargil ◽  
Allan H. Friedman ◽  
Ossama Al-Mefty

Author(s):  
Roger Penrose ◽  
Martin Gardner

Inside our heads is a magnificent structure that controls our actions and somehow evokes an awareness of the world around. Yet, as Alan Turing once put it, it resembles nothing so much as a bowl of cold porridge! It is hard to see how an object of such unpromising appearance can achieve the miracles that we know it to be capable of. Closer examination, however, begins to reveal the brain as having a much more intricate structure and sophisticated organization. The large convoluted (and most porridge-like) portion on top is referred to as the cerebrum. It is divided cleanly down the middle into left and right cerebral hemispheres, and considerably less cleanly front and back into the frontal lobe and three other lobes: the parietal, temporal and occipital. Further down, and at the back lies a rather smaller, somewhat spherical portion of the brain - perhaps resembling two balls of wool - the cerebellum. Deep inside, and somewhat hidden under the cerebrum, lie a number of curious and complicated-looking different structures: the pons and medulla (including the reticular formation, a region that will concern us later) which constitute the brain-stem, the thalamus, hypothalamus, hippocampus, corpus callosum, and many other strange and oddly named constructions. The part that human beings feel that they should be proudest of is the cerebrum - for that is not only the largest part of the human brain, but it is also larger, in its proportion of the brain as a whole, in man than in other animals. (The cerebellum is also larger in man than in most other animals.) The cerebrum and cerebellum have comparatively thin outer surface layers of grey matter and larger inner regions of white matter. These regions of grey matter are referred to as, respectively, the cerebral cortex and the cerebellar cortex. The grey matter is where various kinds of computational task appear to be performed, while the white matter consists of long nerve fibres carrying signals from one part of the brain to another. Various parts of the cerebral cortex are associated with very specific functions.


2005 ◽  
Vol 63 (2a) ◽  
pp. 252-258 ◽  
Author(s):  
Igor de Castro ◽  
Daniel de Holanda Christoph ◽  
Daniel Paes dos Santos ◽  
José Alberto Landeiro

The aim of this study is to introduce the fiber dissection technique and its importance in the comprehension of the three-dimensional intrinsic anatomy of the brain. A total of twenty brain hemispheres were dissected. Using Kingler's technique we demonstrated the intrinsic structures of the brain. The supra lateral aspect of the brain as well as the medial aspect were presented. The most important fiber systems were demonstrated. The use and comprehension of new neuroimaging techniques demand a better understanding of this fascinating anatomy. The knowledge acquired with this technique will improve our understanding of critical pathways of the central nervous system.


2016 ◽  
Vol 124 (2) ◽  
pp. 450-462 ◽  
Author(s):  
Christos Koutsarnakis ◽  
Faidon Liakos ◽  
Evangelia Liouta ◽  
Konstantinos Themistoklis ◽  
Damianos Sakas ◽  
...  

OBJECT The cerebral isthmus is the white matter area located between the periinsular sulcus and the lateral ventricle. Studies demonstrating the fiber tract and topographic anatomy of this entity are lacking in current neurosurgical literature. Hence, the authors’ primary aim was to describe the microsurgical white matter anatomy of the cerebral isthmus by using the fiber dissection technique, and they discuss its functional significance. In addition, they sought to investigate its possible surgical utility in approaching lesions located in or adjacent to the lateral ventricle. METHODS This study was divided into 2 parts and included 30 formalin-fixed cerebral hemispheres, 5 of which were injected with colored silicone. In the first part, 15 uncolored specimens underwent the Klinger’s procedure and were dissected in a lateromedial direction at the level of the superior, inferior, and anterior isthmuses, and 10 were used for coronal and axial cuts. In the second part, the injected specimens were used to investigate the surgical significance of the superior isthmus in accessing the frontal horn of the lateral ventricle. RESULTS The microsurgical anatomy of the anterior, superior, and inferior cerebral isthmuses was carefully studied and recorded both in terms of topographic and fiber tract anatomy. In addition, the potential role of the proximal part of the superior isthmus as an alternative safe surgical corridor to the anterior part of the lateral ventricle was investigated. CONCLUSIONS Using the fiber dissection technique along with coronal and axial cuts in cadaveric brain specimens remains a cornerstone in the acquisition of thorough anatomical knowledge of narrow white matter areas such as the cerebral isthmus. The surgical significance of the superior isthmus in approaching the frontal horn of the lateral ventricle is stressed, but further studies must be carried out to elucidate its role in ventricular surgery.


1959 ◽  
Vol 105 (441) ◽  
pp. 1070-1077 ◽  
Author(s):  
R. M. Norman ◽  
H. Urich ◽  
N. E. France

Perivascular cysts visible to the naked eye have been described in the brain of several cases of gargoylism (Lindsayet al., 1948; Hendersonet al., 1952; Naidoo, 1953). In most instances they were small, not exceeding 1 mm. in diameter and confined to the white matter of the cerebral hemispheres. The present case is remarkable for the exceptional size of the perivascular cysts which had led to gross bilateral cavitation of the thalamus and putamen.


2012 ◽  
Vol 71 (suppl_1) ◽  
pp. ons160-ons172 ◽  
Author(s):  
Richard Gonzalo Párraga ◽  
Guilherme Carvalhal Ribas ◽  
Leonardo Christiaan Welling ◽  
Raphael Vicente Alves ◽  
Evandro de Oliveira

Abstract BACKGROUND: The fiber dissection technique provides unique 3-dimensional anatomic knowledge of the white matter. OBJECTIVE: To examine the optic radiation anatomy and its important relationship with the temporal stem and to discuss its findings in relation to the approaches to temporal lobe lesions. METHODS: We studied 40 cerebral hemispheres of 20 brains that had been fixed in formalin solution for 40 days. After removal of the arachnoid membrane, the hemispheres were frozen, and the Klingler technique was used for dissection under magnification. Stereoscopic 3-dimensional images of the dissection were obtained for illustration. RESULTS: The optic radiations are located deep within the superior and middle temporal gyri, always above the inferior temporal sulcus. The mean distance between the cortical surface and the lateral edge of the optic radiation was 21 mm. Its fibers are divided into 3 bundles after their origin. The mean distance between the anterior tip of the temporal horn and the Meyer loop was 4.5 mm, between the temporal pole and the anterior border of the Meyer loop was 28.4 mm, and between the limen insulae and the Meyer loop was 10.7 mm. The mean distance between the lateral geniculate body and the lateral margin of the central bundle of the optic radiation was 17.4 mm. CONCLUSION: The white matter fiber dissection reveals the tridimensional intrinsic architecture of the brain, and its knowledge regarding the temporal lobe is particularly important for the neurosurgeon, mostly because of the complexity of the optic radiation and related fibers.


Sign in / Sign up

Export Citation Format

Share Document