Microsurgical Anatomy of the Optic Radiation and Related Fibers in 3-Dimensional Images

2012 ◽  
Vol 71 (suppl_1) ◽  
pp. ons160-ons172 ◽  
Author(s):  
Richard Gonzalo Párraga ◽  
Guilherme Carvalhal Ribas ◽  
Leonardo Christiaan Welling ◽  
Raphael Vicente Alves ◽  
Evandro de Oliveira

Abstract BACKGROUND: The fiber dissection technique provides unique 3-dimensional anatomic knowledge of the white matter. OBJECTIVE: To examine the optic radiation anatomy and its important relationship with the temporal stem and to discuss its findings in relation to the approaches to temporal lobe lesions. METHODS: We studied 40 cerebral hemispheres of 20 brains that had been fixed in formalin solution for 40 days. After removal of the arachnoid membrane, the hemispheres were frozen, and the Klingler technique was used for dissection under magnification. Stereoscopic 3-dimensional images of the dissection were obtained for illustration. RESULTS: The optic radiations are located deep within the superior and middle temporal gyri, always above the inferior temporal sulcus. The mean distance between the cortical surface and the lateral edge of the optic radiation was 21 mm. Its fibers are divided into 3 bundles after their origin. The mean distance between the anterior tip of the temporal horn and the Meyer loop was 4.5 mm, between the temporal pole and the anterior border of the Meyer loop was 28.4 mm, and between the limen insulae and the Meyer loop was 10.7 mm. The mean distance between the lateral geniculate body and the lateral margin of the central bundle of the optic radiation was 17.4 mm. CONCLUSION: The white matter fiber dissection reveals the tridimensional intrinsic architecture of the brain, and its knowledge regarding the temporal lobe is particularly important for the neurosurgeon, mostly because of the complexity of the optic radiation and related fibers.

2004 ◽  
Vol 101 (5) ◽  
pp. 739-746 ◽  
Author(s):  
Eric H. Sincoff ◽  
Yunxi Tan ◽  
Saleem I. Abdulrauf

Object. The aim of this anatomical study was to define more fully the three-dimensional (3D) relationships between the optic radiations and the temporal horn and superficial anatomy of the temporal lobe by using the Klingler white matter fiber dissection technique. These findings were correlated with established surgical trajectories to the temporal horn. Such surgical trajectories have implications for amygdalohippocampectomy and other procedures that involve entering the temporal horn for the resection of tumors or vascular lesions. Methods. Ten human cadaveric hemispheres were prepared with several cycles of freezing and thawing by using a modification of the method described by Klingler. Wooden spatulas were used to strip away the deeper layers of white matter progressively in a lateromedial direction, and various association, projection, and commissural fibers were demonstrated. As the dissection progressed, photographs of each progressive layer were obtained. Special attention was given to the optic radiation and to the sagittal stratum of which the optic radiation is a part. The trajectories of fibers in the optic radiation were specifically studied in relation to the lateral, medial, superior, and inferior walls of the temporal horn as well as to the superficial anatomy of the temporal lobe. In three of the hemispheres coronal sections were made so that the relationship between the optic radiation and the temporal horn could be studied more fully. In all 10 hemispheres that were dissected the following observations were made. 1) The optic radiation covered the entire lateral aspect of the temporal horn as it extends to the occipital horn. 2) The anterior tip of the temporal horn was covered by the anterior optic radiation along its lateral half. 3) The entire medial wall of the temporal horn was free from optic radiation fibers, except at the level at which these fibers arise from the lateral geniculate body to ascend over the roof of the temporal horn. 4) The superior wall of the temporal horn was covered by optic radiation fibers. 5) The entire inferior wall of the temporal horn was free from optic radiation fibers anterior to the level of the lateral geniculate body. Conclusions. Fiber dissections of the temporal lobe and horn demonstrated the complex 3D relationships between the optic radiations and the temporal horn and superficial anatomy of the temporal lobe. Based on the results of this study, the authors define two anatomical surgical trajectories to the temporal horn that would avoid the optic radiations. The first of these involves a transsylvian anterior medial approach and the second a pure inferior trajectory through a fusiform gyrus. Lateral approaches to the temporal horn through the superior and middle gyri, based on the authors' findings, would traverse the optic radiations.


Neurosurgery ◽  
2004 ◽  
Vol 55 (5) ◽  
pp. 1174-1184 ◽  
Author(s):  
Diedrik Peuskens ◽  
Johannes van Loon ◽  
Frank Van Calenbergh ◽  
Raymond van den Bergh ◽  
Jan Goffin ◽  
...  

Abstract OBJECTIVE: The white matter structure of the anterior temporal lobe and the frontotemporal region is complex and not well appreciated from the available neurosurgical literature. The fiber dissection method is an excellent means of attaining a thorough knowledge of the three-dimensional structure of the white matter tracts. This study was performed to demonstrate the usefulness of the dissection technique in understanding the white matter anatomy and the effects of current surgical approaches on the subcortical structure of the region. METHODS: Seventeen brain specimens obtained at routine autopsy were dissected by use of Klingler's fiber dissection technique after preparation by fixation and freezing. The dissections were performed with an operating microscope and followed a stepwise pattern of progressive white matter dissection. RESULTS: The dissection is described in an orderly fashion showing the white matter tracts of the anterior temporal lobe and the frontotemporal region. An insight is gained into the three-dimensional course of the anterior loop of the optic radiation, the temporal stem, the anterior commissure, and the ansa peduncularis. CONCLUSION: The anterior temporal lobe and the frontotemporal region contain several important white matter tracts that can be uniquely understood by performing a white matter dissection of the region. Surgical procedures on the anterior temporal lobe differ substantially as to their repercussions on the subcortical white matter tract anatomy, as shown by the findings in this study.


2016 ◽  
Vol 124 (2) ◽  
pp. 450-462 ◽  
Author(s):  
Christos Koutsarnakis ◽  
Faidon Liakos ◽  
Evangelia Liouta ◽  
Konstantinos Themistoklis ◽  
Damianos Sakas ◽  
...  

OBJECT The cerebral isthmus is the white matter area located between the periinsular sulcus and the lateral ventricle. Studies demonstrating the fiber tract and topographic anatomy of this entity are lacking in current neurosurgical literature. Hence, the authors’ primary aim was to describe the microsurgical white matter anatomy of the cerebral isthmus by using the fiber dissection technique, and they discuss its functional significance. In addition, they sought to investigate its possible surgical utility in approaching lesions located in or adjacent to the lateral ventricle. METHODS This study was divided into 2 parts and included 30 formalin-fixed cerebral hemispheres, 5 of which were injected with colored silicone. In the first part, 15 uncolored specimens underwent the Klinger’s procedure and were dissected in a lateromedial direction at the level of the superior, inferior, and anterior isthmuses, and 10 were used for coronal and axial cuts. In the second part, the injected specimens were used to investigate the surgical significance of the superior isthmus in accessing the frontal horn of the lateral ventricle. RESULTS The microsurgical anatomy of the anterior, superior, and inferior cerebral isthmuses was carefully studied and recorded both in terms of topographic and fiber tract anatomy. In addition, the potential role of the proximal part of the superior isthmus as an alternative safe surgical corridor to the anterior part of the lateral ventricle was investigated. CONCLUSIONS Using the fiber dissection technique along with coronal and axial cuts in cadaveric brain specimens remains a cornerstone in the acquisition of thorough anatomical knowledge of narrow white matter areas such as the cerebral isthmus. The surgical significance of the superior isthmus in approaching the frontal horn of the lateral ventricle is stressed, but further studies must be carried out to elucidate its role in ventricular surgery.


2011 ◽  
Vol 69 (suppl_2) ◽  
pp. ons241-ons247 ◽  
Author(s):  
Johann Peltier ◽  
Sébastien Verclytte ◽  
Christine Delmaire ◽  
Jean-Pierre Pruvo ◽  
Eric Havet ◽  
...  

Abstract BACKGROUND Detailed anatomy of the anterior commissure is unknown in the literature. OBJECTIVE To describe the anterior commissure with the use of a fiber dissection technique by focusing on the morphology (length and breadth of the 2 portions), the course, and the relations with neighboring fasciculi, particularly in the temporal stem. METHODS We dissected 8 previously frozen, formalin-fixed human brains under the operating microscope using the fiber dissection described by Klingler. Lateral, inferior, and medial approaches were made. RESULTS The anterior olfactive limb of the anterior commissure was sometimes absent during dissection. The cross-sectional 3-dimensional magnetic resonance rendering images showed that fibers of the anterior commissure curved laterally within the basal forebrain. The tip of the temporal limb of the anterior commissure was intermingled with other fasciculi in various directions to form a dense 3-dimensional network. CONCLUSION Functional anatomy and comparative anatomy are described. The anterior commissure can be involved in various pathologies such as diffuse axonal injury, schizophrenia, and cerebral tumoral dissemination.


2014 ◽  
Vol 10 (4) ◽  
pp. 602-620 ◽  
Author(s):  
Kaan Yagmurlu ◽  
Albert L. Rhoton ◽  
Necmettin Tanriover ◽  
Jeffrey A. Bennett

Abstract BACKGROUND: There have been no studies of the structure and safe surgical entry zones of the brainstem based on fiber dissection studies combined with 3-dimensional (3-D) photography. OBJECTIVE: To examine the 3-D internal architecture and relationships of the proposed safe entry zones into the midbrain, pons, and medulla. METHODS: Fifteen formalin and alcohol-fixed human brainstems were dissected by using fiber dissection techniques, ×6 to ×40 magnification, and 3-D photography to define the anatomy and the safe entry zones. The entry zones evaluated were the perioculomotor, lateral mesencephalic sulcus, and supra- and infracollicular areas in the midbrain; the peritrigeminal zone, supra- and infrafacial approaches, acoustic area, and median sulcus above the facial colliculus in the pons; and the anterolateral, postolivary, and dorsal medullary sulci in the medulla. RESULTS: The safest approach for lesions located below the surface is usually the shortest and most direct route. Previous studies have often focused on surface structures. In this study, the deeper structures that may be at risk in each of the proposed safe entry zones plus the borders of each entry zone were defined. This study includes an examination of the relationships of the cerebellar peduncles, long tracts, intra-axial segments of the cranial nerves, and important nuclei of the brainstem to the proposed safe entry zones. CONCLUSION: Fiber dissection technique in combination with the 3-D photography is a useful addition to the goal of making entry into the brainstem more accurate and safe.


2005 ◽  
Vol 18 (6) ◽  
pp. 1-9 ◽  
Author(s):  
M. Gazi Yaşargil ◽  
Uğur Türe ◽  
Dianne C. H. Yaşargil ¸

Object In this paper the authors correlate the surgical aspects of deep median and paramedian supratentorial lesions with the connective fiber systems of the white matter of the brain. Methods The cerebral hemispheres of 10 cadaveric brains were dissected in a mediolateral direction by using the fiber dissection technique, corresponding to the surgical approach. Conclusions This study illuminates the delicacy of the intertwined and stratified fiber laminae of the white matter, and establishes that these structures can be preserved at surgical exploration in patients.


2015 ◽  
Vol 11 (2) ◽  
pp. 274-305 ◽  
Author(s):  
Kaan Yagmurlu ◽  
Alexander L Vlasak ◽  
Albert L Rhoton

Abstract BACKGROUND The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. OBJECTIVE To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. METHODS Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. RESULTS The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. CONCLUSION An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.


2005 ◽  
Vol 5 (5) ◽  
pp. 187-189 ◽  
Author(s):  
Gregory D. Cascino

Voxel-based Morphometry of the Thalamus in Patients with Refractory Medial Temporal Lobe Epilepsy Bonilha L, Rorden C, Castellano G, Cendes F, Li LM Neuroimage 2005;25:1016–1021 Previous research has suggested that patients with refractory medial temporal lobe epilepsy (MTLE) show gray matter atrophy both within the temporal lobes and in the thalamus. However, these studies have not distinguished between different nuclei within the thalamus. We examined whether thalamic atrophy correlates with the nuclei's connections to other regions in the limbic system. T1-weighted MRI scans were obtained from 49 neurologically healthy control subjects and 43 patients diagnosed with chronic refractory MTLE that was unilateral in origin (as measured by ictal EEG and hippocampal atrophy observed on MRI). Measurements of gray matter concentration (GMC) were made by using automated segmentation algorithms. GMC was analyzed both voxel by voxel (preserving spatial precision) as well as using predefined regions of interest. Voxel-based morphometry revealed intense GMC reduction in the anterior portion relative to posterior thalami. Furthermore, thalamic atrophy was greater ipsilateral to the MTLE origin than on the contralateral side. Here we demonstrate that the thalamic atrophy is most intense in the thalamic nuclei that have strong connections with the limbic hippocampus. This finding suggests that thalamic atrophy reflects this region's anatomic and functional association with the limbic system rather than a general vulnerability to damage. Ipsilateral and Contralateral MRI Volumetric Abnormalities in Chronic Unilateral Temporal Lobe Epilepsy and Their Clinical Correlates Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, Hermann B Epilepsia 2005;46:420–430 Purpose To assess the presence, extent, and clinical correlates of quantitative MR volumetric abnormalities in ipsilateral and contralateral hippocampus, and temporal and extratemporal lobe regions in unilateral temporal lobe epilepsy (TLE). Methods In total, 34 subjects with unilateral left ( n = 15) or right ( n = 19) TLE were compared with 65 healthy controls. Regions of interest included the ipsilateral and contralateral hippocampus as well as temporal, frontal, parietal, and occipital lobe gray and white matter. Clinical markers of neurodevelopmental insult (initial precipitating insult, early age of recurrent seizures) and chronicity of epilepsy (epilepsy duration, estimated number of lifetime generalized seizures) were related to MR volume abnormalities. Results Quantitative MR abnormalities extend beyond the ipsilateral hippocampus and temporal lobe with extratemporal (frontal and parietal lobe) reductions in cerebral white matter, especially ipsilateral but also contralateral to the side of seizure onset. Volumetric abnormalities in ipsilateral hippocampus and bilateral cerebral white matter are associated with factors related to both the onset and the chronicity of the patients’ epilepsy. Conclusions These cross-sectional findings support the view that volumetric abnormalities in chronic TLE are associated with a combination of neurodevelopmental and progressive effects, characterized by a prominent disruption in ipsilateral hippocampus and neural connectivity (i.e., white matter volume loss) that extends beyond the temporal lobe, affecting both ipsilateral and contralateral hemispheres. MR Volumetric Analysis of the Piriform Cortex and Cortical Amygdala in Drug-refractory Temporal Lobe Epilepsy Gonçalves Pereira PM, Insaustid R, Artacho-Pérulad E, Salmenperäe T, Kälviäinene R, Pitkänen A AJNR Am J Neuroradiol 2005;26:319–332 Purpose The assessment of patients with temporal lobe epilepsy (TLE) traditionally focuses on the hippocampal formation. These patients, however, may have structural abnormalities in other brain areas. Our purpose was to develop a method to measure the combined volume of the human piriform cortex and cortical amygdala (PCA) by using MRI and to investigate PCA atrophy. Methods The definition of anatomic landmarks on MRIs was based on histologic analysis of 23 autopsy control subjects. Thirty-nine adults with chronic TLE and 23 age-matched control subjects were studied. All underwent high-spatial-resolution MRI at 1.5 T, including a tilted T1-weighted 3D dataset. The PCA volumes were compared with the control values and further correlated with hippocampal, amygdale, and entorhinal cortex volumes. Results The normal volume was 530 ± 59 mm3 (422-644) (mean ± 1 SD [range]) on the right and 512 ± 60 mm3 (406-610) on the left PCA (no asymmetry, and no age or sex effect). The intraobserver and interobserver variability were 6% and 8%, respectively. In right TLE patients, the mean right PCA volume was 18% smaller than that in control subjects ( p < 0.001) and 15% smaller than in left TLE ( p < 0.001). In left TLE, the mean left PCA volume was 16% smaller than in control subjects ( p < 0.001) and 19% smaller than in right TLE ( p < 0.001). Overall, 18 (46%) of the 39 patients had a greater than 20% volume reduction in the ipsilateral PCA. Bilateral atrophy was found in 7 (18%) of 39. Patients with hippocampal volumes of at least 2 SDs below the control mean had an 18% reduction in the mean PCA volume compared with patients without hippocampal atrophy ( p < 0.001). Ipsilaterally, hippocampal ( r = 0.756, p < 0.01), amygdaloid ( r = 0.548, p < 0.01), and entorhinal ( r = 0.500, p < 0.01) volumes correlated with the PCA volumes. Conclusions The quantification of PCA volume with MRI showed that the PCA is extensively damaged in chronic TLE patients, particularly in those with hippocampal atrophy.


2013 ◽  
Vol 10 (2) ◽  
pp. 294-304 ◽  
Author(s):  
Carlos Alarcon ◽  
Matteo de Notaris ◽  
Kenneth Palma ◽  
Guadalupe Soria ◽  
Alessandro Weiss ◽  
...  

Abstract BACKGROUND: Different strategies have been used to study the fiber tract anatomy of the human brain in vivo and ex vivo. Nevertheless, the ideal method to study white matter anatomy has yet to be determined because it should integrate information obtained from multiple sources. OBJECTIVE: We developed an anatomic method in cadaveric specimens to study the central core of the cerebrum combining traditional white matter dissection with high-resolution 7-T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system. METHODS: Ten cerebral hemispheres were prepared using the traditional Klingler technique. Before dissection, a structural ultrahigh magnetic field 7-T MRI study was performed on each hemisphere specifically prepared with surface fiducials for neuronavigation. The dissection was then performed from the medial hemispheric surface using the classic white fiber dissection technique. During each step of the dissection, the correlation between the anatomic findings and the 7-T MRI was evaluated with the neuronavigation system. RESULTS: The anatomic study was divided in 2 stages: diencephalic and limbic. The diencephalic stage included epithalamic, thalamic, hypothalamic, and subthalamic components. The limbic stage consisted of extending the dissection to complete the Papez circuit. The detailed information given by the combination of both methods allowed us to identify and validate the position of fibers that may be difficult to appreciate and dissect (ie, the medial forebrain bundle). CONCLUSION: The correlation of high-definition 7-T MRI and the white matter dissection technique with neuronavigation significantly improves the understanding of the structural connections in complex areas of the human cerebrum.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Alessandro Orlando ◽  
A Richey Sharrett ◽  
Rebecca F Gottesman ◽  
David Knopman ◽  
Andrea L Schneider ◽  
...  

Introduction: Studies have found that smaller brain volumes, cerebral infarcts, and white matter abnormalities are associated with dementia and mild cognitive impairment. However, these studies have been limited by short follow-up precluding a strong establishment of temporality. Therefore, it is unknown whether brain imaging findings are preceded by long-term changes in cognition. We sought to address this gap by examining brain imaging and two decades of cognitive changes in and a large, representative population-based cohort of older adults of black and white race. Hypothesis: We hypothesized that 22-year declines in global cognitive factor scores (GCFS) would be associated with a pattern of smaller total brain and temporal lobe meta region of interest (likely to be affected by Alzheimer’s disease) volumes, larger white matter hyperintensity volumes, and greater odds of ≥1 lacunar infarct and elevated brain β-amyloid deposition. Methods: ARIC participants with brain imaging data, complete cognitive factor score, and not missing key covariates were included. GCFS were collected at three visits across 22 years (1990-2013), and brain MRI and florbetapir PET imaging were collected in 2011-13; PET in subset of n=327. Mixed effects models with random intercepts and slopes predicted individual change in GCFS. Outcomes of interest were total brain volume (cc), temporal lobe meta region volume, log 2 (white matter hyperintensity volume), ≥1 lacunar infarct, and elevated brain β-amyloid deposition (SUVR >1.2). Multivariable linear and logistic regression was used to relate outcomes to GCFS slopes after adjusting for confounders, including vascular risk factors. As appropriate, models were also adjusted for total intracranial volume. Results: Among 1957 with complete brain MRI imaging, 1830 were included in the study, 60% (n=1096) women and 26% (n=480) black. At the first visit, the mean (SD) baseline age was 55 (5.2) yrs. The mean (SD) observed GCFS at the three visits were 0.16 (0.79), 0.05 (0.75), and -0.78 (0.86). After adjustment, a 1-SD larger decline in GCFS was significantly associated with a smaller brain volume by 1.6% [95%CI: 1.3, 1.8] relative to mean brain volume, a smaller temporal lobe meta region volume by 2.4% [2.1, 2.8] relative to the mean volume, a 15% [11, 19] larger volume of white matter hyperintensities, 1.3-fold [1.2, 1.4] higher odds of having ≥1 lacune, and 1.8-fold [1.4, 2.4] higher odds of elevated brain β-amyloid deposition. Associations remained significant after further adjustment for first or last GCFS. Conclusions: Greater declines in long-term cognitive functioning were significantly associated with smaller brain volumes and dementia-related brain characteristics and were independent of last visit GCFS. This suggests long-term changes in cognition may precede late-life brain morphology and outperform cross-sectional cognitive measures.


Sign in / Sign up

Export Citation Format

Share Document