Three-dimensional magnetic resonance images of the brain: application to neurosurgical planning

1990 ◽  
Vol 72 (3) ◽  
pp. 433-440 ◽  
Author(s):  
Xiaoping Hu ◽  
Kim K. Tan ◽  
David N. Levin ◽  
Simranjit Galhotra ◽  
John F. Mullan ◽  
...  

✓ Data from single 10-minute magnetic resonance scans were used to create three-dimensional (3-D) views of the surfaces of the brain and skin of 12 patients. In each case, these views were used to make a preoperative assessment of the relationship of lesions to brain surface structures associated with movement, sensation, hearing, and speech. Interactive software was written so that the user could “slice” through the 3-D computer model and inspect cross-sectional images at any level. A surgery simulation program was written so that surgeons were able to “rehearse” craniotomies on 3-D computer models before performing the actual operations. In each case, the qualitative accuracy of the 3-D views was confirmed by intraoperative inspection of the brain surface and by intraoperative electrophysiological mapping, when available.

1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 191-192 ◽  
Author(s):  
Lee Walton ◽  
Anna Hampshire ◽  
Paul Vaughan ◽  
David M. C. Forster ◽  
Andras A. Kemeny ◽  
...  

✓ The purpose of this paper was to note a potential source of error in magnetic resonance (MR) imaging. Magnetic resonance images were acquired for stereotactic planning for GKS of a vestibular schwannoma in a female patient. The images were acquired using three-dimensional sequence, which has been shown to produce minimal distortion effects. The images were transferred to the planning workstation, but the coronal images were rejected. By examination of the raw data and reconstruction of sagittal images through the localizer side plate, it was clearly seen that the image of the square localizer system was grossly distorted. The patient was returned to the MR imager for further studies and a metal clasp on her brassiere was identified as the cause of the distortion.


2001 ◽  
Vol 262 (4) ◽  
pp. 429-439 ◽  
Author(s):  
Lori Marino ◽  
Timothy L. Murphy ◽  
Amy L. Deweerd ◽  
John A. Morris ◽  
Archibald J. Fobbs ◽  
...  

1994 ◽  
Vol 81 (4) ◽  
pp. 629-633 ◽  
Author(s):  
André Olivier ◽  
Isabelle M. Germano ◽  
Arthur Cukiert ◽  
Terry Peters

✓ Frameless stereotactic techniques used in conjunction with three-dimensional images allow accurate planning and performance of a variety of neurosurgical procedures. The authors have used the frameless stereotactic Allegro Viewing Wand system to provide real-time correlation of the operating field and computerized images in 42 neurosurgical operations, including 31 epilepsy procedures. The system consists of an image-processing computer that creates three-dimensional and triplanar images; a mobile computer to display reformatted magnetic resonance images; and a hand-guided, articulated, position-sensing arm with a probe. At the start of the operation, the probe identifies the patient's facial and scalp features and correlates these with the computerized images. The position-sensing arm can then guide the operation and locate anatomical structures and lesions of interest. This system can be used to advantage in performing smaller craniotomies and intraoperatively locating anatomical structures and lesions to be removed. Postoperative magnetic resonance images demonstrate that this technique was accurate to within 3 mm in measuring the anteroposterior resection of fixed structures, such as hippocampus and corpus callosum. Disadvantages include longer preoperative preparation for data analysis and lack of both real-time computer analysis of tissue removal and angiographic data display. Preliminary experience suggests that the viewing wand system's advantages outweigh the disadvantages, and it is most helpful as an adjunctive navigational device in the microsurgical treatment of epilepsy.


1996 ◽  
Vol 85 (4) ◽  
pp. 685-688 ◽  
Author(s):  
Jerry Bauer ◽  
Roger F. Johnson ◽  
Joseph M. Levy ◽  
Donald V. Pojman ◽  
John R. Ruge

✓ Intracranial tuberculomas generally present as either solitary or multiple lesions in the brain parenchyma. They are characterized by a ring-enhancing area on either computerized tomography scans or magnetic resonance images. A case is presented in which an intracranial tuberculoma was dural based and had an appearance similar to an en plaque meningioma.


2001 ◽  
Vol 264 (4) ◽  
pp. 397-414 ◽  
Author(s):  
Lori Marino ◽  
Keith D. Sudheimer ◽  
Timothy L. Murphy ◽  
Kristina K. Davis ◽  
D. Ann Pabst ◽  
...  

1993 ◽  
Vol 79 (2) ◽  
pp. 296-303 ◽  
Author(s):  
Kim K. Tan ◽  
Robert Grzeszczuk ◽  
David N. Levin ◽  
Charles A. Pelizzari ◽  
George T. Y. Chen ◽  
...  

✓ A frameless stereotactic device interfacing an electromagnetic three-dimensional (3-D) digitizer to a computer workstation is described. The patient-image coordinate transformation was found by retrospectively registering a digitizer-derived model of the patient's scalp with a magnetic resonance (MR) imaging-derived model of the same surface. This procedure was performed with routine imaging data, eliminating the need to obtain special-purpose MR images with fiducial markers in place. After patient-image fusion was achieved, a hand-held digitizing stylus was moved over the scalp and tracked in real time on cross-sectional and 3-D brain images on the computer screen. This device was used for presurgical localization of lesions in 10 patients with meningeal and superficial brain tumors. The results suggest that the system is accurate enough (typical error range 3 to 8 mm) to enable the surgeon to reduce the craniotomy to one-half the size advisable with conventional qualitative presurgical planning.


2001 ◽  
Vol 95 (1) ◽  
pp. 119-121
Author(s):  
Cheng-Loong Liang ◽  
Chun-Chung Lui ◽  
Kang Lu ◽  
Tao-Chen Lee ◽  
Han-Jung Chen

✓ The authors describe a patient with ossiculum terminale. Thin-section three-dimensional computerized tomography reconstructions, magnetic resonance images, and radiographs of the cervical spine were obtained to evaluate the atlantoaxial stability and structures of the ossiculum terminale. Bone had formed between the ossicles and the body of the odontoid process, and good atlantoaxial stability was clearly demonstrated.


Author(s):  
Wen Li ◽  
Nancy C. Andreasen ◽  
Peg Nopoulos ◽  
Vincent A. Magnotta

1996 ◽  
Vol 85 (2) ◽  
pp. 299-309 ◽  
Author(s):  
Aaron G. Filler ◽  
Michel Kliot ◽  
Franklyn A. Howe ◽  
Cecil E. Hayes ◽  
Dawn E. Saunders ◽  
...  

✓ Currently, diagnosis and management of disorders involving nerves are generally undertaken without images of the nerves themselves. The authors evaluated whether direct nerve images obtained using the new technique of magnetic resonance (MR) neurography could be used to make clinically important diagnostic distinctions that cannot be readily accomplished using existing methods. The authors obtained T2-weighted fast spin—echo fat-suppressed (chemical shift selection or inversion recovery) and T1-weighted images with planes parallel or transverse to the long axis of nerves using standard or phased-array coils in healthy volunteers and referred patients in 242 sessions. Longitudinal and cross-sectional fascicular images readily distinguished perineural from intraneural masses, thus predicting both resectability and requirement for intraoperative electrophysiological monitoring. Fascicle pattern and longitudinal anatomy firmly identified nerves and thus improved the safety of image-guided procedures. In severe trauma, MR neurography identified nerve discontinuity at the fascicular level preoperatively, thus verifying the need for surgical repair. Direct images readily demonstrated increased diameter in injured nerves and showed the linear extent and time course of image hyperintensity associated with nerve injury. These findings confirm and precisely localize focal nerve compressions, thus avoiding some exploratory surgery and allowing for smaller targeted exposures when surgery is indicated. Direct nerve imaging can demonstrate nerve continuity, distinguish intraneural from perineural masses, and localize nerve compressions prior to surgical exploration. Magnetic resonance neurography can add clinically useful diagnostic information in many situations in which physical examinations, electrodiagnostic tests, and existing image techniques are inconclusive.


Sign in / Sign up

Export Citation Format

Share Document