Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome

1996 ◽  
Vol 85 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Zeev Feldman ◽  
Boris Gurevitch ◽  
Alan A. Artru ◽  
Arieh Oppenheim ◽  
Esther Shohami ◽  
...  

✓ Excitatory amino acids (EAA), mainly glutamate and aspartate, are released in excessive amounts from terminals of ischemic or traumatically injured neurons. These excessive levels of EAAs initiate a cascade of events believed to lead to secondary delayed damage to the surrounding brain. The N-methyl-d-aspartate receptor antagonists MK-801 and ketamine are reported to suppress excessive EAA release and to attenuate the development of focal brain edema following neuronal injury. Magnesium is also reported to work at the postsynaptic receptor to reduce the neurotoxic effect of glutamate. The present study was undertaken to examine the effect of postinjury treatment with Mg++ on brain edema and neurological outcome after traumatic brain injury. Sixty-nine rats that survived halothane anesthesia and closed head trauma (CHT) were randomly assigned to one of seven experimental groups: sham, CHT, and CHT with administration of Mg++ 1 hour postinjury. At 48 hours, brain tissue Mg++ concentration (calculated from optical density using a standard curve) was significantly increased compared to baseline levels (10.06 ± 2.44 mg/g vs. 6.83 ± 0.81 mg/g, p < 0.01 calculated by one-way analysis of variance). Also at 48 hours postinjury, brain tissue specific gravity in the contused hemisphere of Mg++-treated rats was significantly greater than that in the contused hemisphere of untreated rats, indicating attenuation of brain edema formation by Mg++. The neurological severity score (NSS) of rats treated with Mg++ improved significantly at both 18 and 48 hours, compared to baseline values obtained 1 hour after CHT but prior to administration of Mg++ (11.2 ± 2.5 vs. 15.2 ± 4.1, p = 0.03; and 12.3 ± 6.1 vs. 17.3 ± 3.6, p = 0.004, respectively). In the untreated groups, the NSS at 18 and 48 hours was not significantly different from baseline values (that is, no neurological improvement). The present study indicates that postinjury treatment with Mg++ attenuates brain edema formation and improves neurological outcome after experimental CHT.

2000 ◽  
Vol 92 (6) ◽  
pp. 1016-1022 ◽  
Author(s):  
Ya Hua ◽  
Guohua Xi ◽  
Richard F. Keep ◽  
Julian T. Hoff

Object. Brain edema formation following intracerebral hemorrhage (ICH) appears to be partly related to erythrocyte lysis and hemoglobin release. Erythrocyte lysis may be mediated by the complement cascade, which then triggers parenchymal injury. In this study the authors examine whether the complement cascade is activated after ICH and whether inhibition of complement attenuates brain edema around the hematoma.Methods. This study was divided into three parts. In the first part, 100 µl of autologous blood was infused into the rats' right basal ganglia, and the animals were killed at 24 and 72 hours after intracerebral infusion. Their brains were tested for complement factors C9, C3d, and clusterin (a naturally occurring complement inhibitor) by using immunohistochemical analysis. In the second part of the study, the rats were killed at 24 or 72 hours after injection of 100 µl of blood. The C9 and clusterin proteins were quantitated using Western blot analysis. In the third part, the rats received either 100 µl of blood or 100 µl of blood plus 10 µg of N-acetylheparin (a complement activation inhibitor). Then they were killed 24 or 72 hours later for measurement of brain water and ion contents. It was demonstrated on Western blot analysis that there had been a sixfold increase in C9 around the hematoma 24 hours after the infusion of 100 µl of autologous blood. Marked perihematomal C9 immunoreactivity was detected at 72 hours. Clusterin also increased after ICH and was expressed in neurons 72 hours later. The addition of N-acetylheparin significantly reduced brain edema formation in the ipsilateral basal ganglia at 24 hours (78.5 ± 0.5% compared with 81.6 ± 0.8% in control animals, p < 0.001) and at 72 hours (80.9 ± 2.2% compared with 83.6 ± 0.9% in control animals, p < 0.05) after ICH.Conclusions. It was found that ICH causes complement activation in the brain. Activation of complement and the formation of membrane attack complex contributes to brain edema formation after ICH. Blocking the complement cascade could be an important step in the therapy for ICH.


1998 ◽  
Vol 89 (6) ◽  
pp. 991-996 ◽  
Author(s):  
Guohua Xi ◽  
Richard F. Keep ◽  
Julian T. Hoff

Object. The mechanisms of brain edema formation following spontaneous intracerebral hemorrhage (ICH) are not well understood. In previous studies, no significant edema formation has been found 24 hours after infusion of packed red blood cells (RBCs) into the brain of a rat or pig; however, there is evidence that hemoglobin can be neurotoxic. In this study, the authors reexamined the role of RBCs and hemoglobin in edema formation after ICH. Methods. The experiments involved infusion of whole blood, packed RBCs, lysed RBCs, rat hemoglobin, or thrombin into the right basal ganglia of Sprague—Dawley rats. The animals were killed at different time points and brain water and ion contents were measured. The results showed that lysed autologous erythrocytes, but not packed erythrocytes, produced marked brain edema 24 hours after infusion and that this edema formation could be mimicked by hemoglobin infusion. Although infusion of packed RBCs did not produce dramatic brain edema during the first 2 days, it did induce a marked increase in brain water content 3 days postinfusion. Edema formation following thrombin infusion peaked at 24 to 48 hours. This is earlier than the peak in edema formation that follows ICH, suggesting that there is a delayed, nonthrombin-mediated, edemogenic component of ICH. Conclusions. These results demonstrate that RBCs play a potentially important role in delayed edema development after ICH and that RBC lysis and hemoglobin toxicity may be useful targets for therapeutic intervention.


2000 ◽  
Vol 93 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Michael Bitzer ◽  
Thomas Nägele ◽  
Beverly Geist-Barth ◽  
Uwe Klose ◽  
Eckardt Grönewäller ◽  
...  

Object. In a prospective study, 28 patients with 32 intracranial meningiomas were examined to determine the role of hydrodynamic interaction between tumor and surrounding brain tissue in the pathogenesis of peritumoral brain edema.Methods. Gadolinium—diethylenetriamine pentaacetic acid (Gd-DPTA), an extracellular contrast agent used for routine clinical imaging, remains strictly extracellular without crossing an intact blood—brain barrier. Therefore, it is well suited for investigations of hydrodynamic extracellular mechanisms in the development of brain edema. Spin-echo T1-weighted magnetic resonance images were acquired before and after intravenous administration of 0.2 mmol/kg Gd-DPTA. Additional T1-weighted imaging was performed 0.6, 3.5, and 6.5 hours later. No significant Gd-DPTA diffused from tumor into peritumoral brain tissue in 12 meningiomas without surrounding brain edema. In contrast, in 17 of 20 meningiomas with surrounding edema, contrast agent in peritumoral brain tissue was detectable after 3.5 hours and 6.5 hours. In three of 20 meningiomas with minimum surrounding edema (< 5 cm3), contrast agent effusion was absent. After 3.5 hours and 6.5 hours strong correlations of edema volume and the maximum distance of contrast spread from the tumor margin into adjacent brain parenchyma (r = 0.84 and r = 0.87, respectively, p < 0.0001) indicated faster effusion in larger areas of edema.Conclusions. The results of this study show that significant contrast agent effusion from the extracellular space of the tumor into the interstitium of the peritumoral brain tissue is only found in meningiomas with surrounding edema. This supports the hypothesis that hydrodynamic processes play an essential role in the pathogenesis of peritumoral brain edema in meningiomas.


2000 ◽  
Vol 93 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Anthony Marmarou ◽  
Panos P. Fatouros ◽  
Pal Barzó ◽  
Gennarina Portella ◽  
Masaaki Yoshihara ◽  
...  

Object. The pathogenesis of traumatic brain swelling remains unclear. The generally held view is that brain swelling is caused primarily by vascular engorgement and that edema plays a relatively minor role in the swelling process. The goal of this study was to examine the roles of cerebral blood volume (CBV) and edema in traumatic brain swelling.Methods. Both brain-tissue water and CBV were measured in 76 head-injured patients, and the relative contribution of edema and blood to total brain swelling was determined. Comparable measures of brain-tissue water were obtained in 30 healthy volunteers and CBV in seven volunteers. Brain edema was measured using magnetic resonance imaging, implementing a new technique for accurate measurement of total tissue water. Measurements of CBV in a subgroup of 31 head-injured patients were based on consecutive measures of cerebral blood flow (CBF) obtained using stable xenon and calculation of mean transit time by dynamic computerized tomography scanning after a rapid bolus injection of iodinated contrast material. The mean (± standard deviation) percentage of swelling due to water was 9.37 ± 8.7%, whereas that due to blood was −0.8 ± 1.32%.Conclusions. The results of this study showed that brain edema is the major fluid component contributing to traumatic brain swelling. Moreover, CBV is reduced in proportion to CBF reduction following severe brain injury.


1973 ◽  
Vol 39 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Jacques Legier ◽  
Italo Rinaldi

✓ A case of gross pulmonary embolization by cortical brain tissue is described. The likelihood of a superimposed coagulating process induced by the thromboplastic effect of cerebral phospholipids is discussed.


2004 ◽  
Vol 101 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Narendra Nathoo ◽  
Pradeep K. Narotam ◽  
Devendra K. Agrawal ◽  
Catherine A. Connolly ◽  
James R. van Dellen ◽  
...  

Object. Apoptosis has increasingly been implicated in the pathobiology of traumatic brain injury (TBI). The present study was undertaken to confirm the presence of apoptosis in the periischemic zone (PIZ) of traumatic cerebral contusions and to determine the role of apoptosis, if any, in neurological outcome. Methods. Brain tissue harvested at Wentworth Hospital from the PIZ in 29 patients with traumatic supratentorial contusions was compared with brain tissue resected in patients with epilepsy. Immunohistochemical analyses were performed on the tissues to see if they contained the apoptosis-related proteins p53, bcl-2, bax, and caspase-3. The findings were then correlated to demographic, clinical, surgical, neuroimaging, and outcome data. In the PIZ significant increases of bax (18-fold; p < 0.005) and caspase-3 (20-fold; p < 0.005) were recorded, whereas bcl-2 was upregulated in only 14 patients (48.3%; 2.9-fold increase) compared with control tissue. Patients in the bcl-2—positive group exhibited improved outcomes at the 18-month follow-up examination despite an older mean age and lower mean admission Glasgow Coma Scale score (p < 0.03). Caspase-3 immunostaining was increased in those patients who died (Glasgow Outcome Scale [GOS] Score 1, 12 patients) when compared with those who experienced a good outcome (GOS Score 4 or 5, 17 patients) (p < 0.005). Regression analysis identified bcl-2—negative status (p < 0.04, odds ratio [OR] 5.5; 95% confidence interval [CI] 1.1–28.4) and caspase-3—positive status (p < 0.01, OR 1.4, 95% CI 1.1—1.8) as independent predictors of poor outcome. No immunostaining for p53 was recorded in the TBI specimens. Conclusions. The present findings confirm apoptosis in the PIZ of traumatic cerebral contusions and indicate that this form of cell death can influence neurological outcome following a TBI.


2001 ◽  
Vol 95 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Tetsuya Masada ◽  
Ya Hua ◽  
Guohua Xi ◽  
Guo-Yuan Yang ◽  
Julian T. Hoff ◽  
...  

Object. Adenovirus-mediated overexpression of interleukin-1 receptor antagonist (IL-1ra) attenuates the inflammatory reaction and brain injury that follows focal cerebral ischemia. Recently, an inflammatory reaction after intracerebral hemorrhage (ICH) was identified. In this study the authors examine the hypothesis that overexpression of IL-1ra reduces brain injury (specifically edema formation) after ICH. Methods. Adenoviruses expressing IL-1ra (Ad.RSVIL-1ra) or LacZ, a control protein (Ad.RSVlacZ), or saline were injected into the left lateral cerebral ventricle in rats. On the 5th day after virus injection, 100 µl of autologous blood or 5 U thrombin was infused into the right basal ganglia. Rats with ICH were killed 24 or 72 hours later for measurement of brain water and ion content. Thrombin-treated rats were killed 24 hours later for edema measurements and an assessment of polymorphonuclear leukocyte (PMNL) infiltration by myeloperoxidase (MPO) assay, as well as histological evaluation. Compared with saline-treated and Ad.RSVlacZ—transduced controls, Ad.RSVIL-1ra-transduced rats had significantly attenuated edema in the ipsilateral basal ganglia 3 days after ICH (81.5 ± 0.3% compared with 83.4 ± 0.4% and 83.3 ± 0.5% in control animals). Thrombin-induced brain edema was also reduced in Ad.RSVIL-1ra—treated rats (81.3 ± 0.4% compared with 83.2 ± 0.4% and 82.5 ± 0.4% in control rats). The reduction in thrombin-induced edema was associated with a reduction in PMNL infiltration into the basal ganglia, as assessed by MPO assay (49% reduction) and histological examination. Conclusions. Overexpression of IL-1ra by using an adenovirus vector attenuated brain edema formation and thrombin-induced intracerebral inflammation following ICH. The reduction in ICH-induced edema with IL-1ra may result from reduction of thrombin-induced brain inflammation.


1995 ◽  
Vol 83 (6) ◽  
pp. 1045-1050 ◽  
Author(s):  
Kevin R. Lee ◽  
A. Lorris Betz ◽  
Richard F. Keep ◽  
Thomas L. Chenevert ◽  
Seoung Kim ◽  
...  

✓ Purified thrombin from an exogenous source is a hemostatic agent commonly used in neurosurgical procedures. The toxicity of thrombin in the brain, however, has not been examined. This study was performed to assess the effect of thrombin on brain parenchyma, using the formation of brain edema as an indicator of injury. Ten µl of test solution was infused stereotactically into the right basal ganglia of rats. The animals were sacrificed 24 hours later, and the extent of brain edema and ion content were measured. Concentrations of human thrombin as low as 1 U/µl resulted in a significant increase in brain water content. Rats receiving 10 U/µl had a mortality rate of 33% compared to no mortality in the groups receiving smaller doses. Thrombin-induced brain edema was inhibited by a specific and potent thrombin inhibitor, hirudin. A medical grade of bovine thrombin commonly used in surgery also caused brain edema when injected at a concentration of 2 U/µl. Edema formation was prevented by another highly specific thrombin inhibitor, Nα-(2-Naphthalenesulfonylglycyl)-4-dl-phenylalaninepiperidide (α-NAPAP). Thrombininduced brain edema was accompanied by increases in brain sodium and chloride contents and a decrease in brain potassium content. Changes in brain ions were inhibited by both hirudin and α-NAPAP, corresponding to the inhibition of brain water accumulation. This study shows that thrombin causes brain edema when infused into the brain at concentrations as low as 1 U/µl, an amount within the range of concentrations used for topical hemostasis in neurosurgery.


2004 ◽  
Vol 100 (3) ◽  
pp. 498-504 ◽  
Author(s):  
Joachim Oertel ◽  
Michael Robert Gaab ◽  
Dirk-Thomas Pillich ◽  
Henry W. S. Schroeder ◽  
Rolf Warzok ◽  
...  

Object. The waterjet method of dissection has been shown to enable the precise dissection of the parenchyma vessels while preserving blood in cadaveric pig brains. The waterjet device has also been applied clinically to treat various diseases and disorders without complications. Evidence still remains to be gathered as to how the instrument performs in reducing surgical trauma, intraoperative blood loss, and postsurgical brain edema. In the present study the authors investigate these parameters in a comparison between waterjet dissection and ultrasonic aspiration in the rabbit brain in vivo. Methods. Thirty-one rabbits received identical bilateral frontal corticotomies, which were created using the waterjet device or an ultrasonic aspirator. The animals were killed 1, 3, or 7 days, or 6 weeks after surgery and their brains were processed for immunohistological analysis. Blood vessel preservation, intraoperative hemorrhage, postsurgical brain edema, and posttraumatic microglial and astoglial reactions were evaluated. Only in animals subjected to waterjet dissection were preserved vessels observed within the corticotomies. In addition, less intraoperative bleeding occurred in animals in which the waterjet was used. The microglial reaction was significantly reduced by waterjet dissection compared with ultrasonic aspiration; however, no difference in edema formation or astrocytic reactivity was observed. Conclusions. These results demonstrate that waterjet dissection appears to be less traumatic than ultrasonic aspiration with respect to intraoperative hemorrhage and postoperative microglial reactivity in the rabbit model. Nevertheless, no difference in edema formation could be demonstrated. It remains to be proven that the observed differences are of clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document