Comparison of waterjet dissection and ultrasonic aspiration: an in vivo study in the rabbit brain

2004 ◽  
Vol 100 (3) ◽  
pp. 498-504 ◽  
Author(s):  
Joachim Oertel ◽  
Michael Robert Gaab ◽  
Dirk-Thomas Pillich ◽  
Henry W. S. Schroeder ◽  
Rolf Warzok ◽  
...  

Object. The waterjet method of dissection has been shown to enable the precise dissection of the parenchyma vessels while preserving blood in cadaveric pig brains. The waterjet device has also been applied clinically to treat various diseases and disorders without complications. Evidence still remains to be gathered as to how the instrument performs in reducing surgical trauma, intraoperative blood loss, and postsurgical brain edema. In the present study the authors investigate these parameters in a comparison between waterjet dissection and ultrasonic aspiration in the rabbit brain in vivo. Methods. Thirty-one rabbits received identical bilateral frontal corticotomies, which were created using the waterjet device or an ultrasonic aspirator. The animals were killed 1, 3, or 7 days, or 6 weeks after surgery and their brains were processed for immunohistological analysis. Blood vessel preservation, intraoperative hemorrhage, postsurgical brain edema, and posttraumatic microglial and astoglial reactions were evaluated. Only in animals subjected to waterjet dissection were preserved vessels observed within the corticotomies. In addition, less intraoperative bleeding occurred in animals in which the waterjet was used. The microglial reaction was significantly reduced by waterjet dissection compared with ultrasonic aspiration; however, no difference in edema formation or astrocytic reactivity was observed. Conclusions. These results demonstrate that waterjet dissection appears to be less traumatic than ultrasonic aspiration with respect to intraoperative hemorrhage and postoperative microglial reactivity in the rabbit model. Nevertheless, no difference in edema formation could be demonstrated. It remains to be proven that the observed differences are of clinical relevance.

2000 ◽  
Vol 92 (6) ◽  
pp. 1016-1022 ◽  
Author(s):  
Ya Hua ◽  
Guohua Xi ◽  
Richard F. Keep ◽  
Julian T. Hoff

Object. Brain edema formation following intracerebral hemorrhage (ICH) appears to be partly related to erythrocyte lysis and hemoglobin release. Erythrocyte lysis may be mediated by the complement cascade, which then triggers parenchymal injury. In this study the authors examine whether the complement cascade is activated after ICH and whether inhibition of complement attenuates brain edema around the hematoma.Methods. This study was divided into three parts. In the first part, 100 µl of autologous blood was infused into the rats' right basal ganglia, and the animals were killed at 24 and 72 hours after intracerebral infusion. Their brains were tested for complement factors C9, C3d, and clusterin (a naturally occurring complement inhibitor) by using immunohistochemical analysis. In the second part of the study, the rats were killed at 24 or 72 hours after injection of 100 µl of blood. The C9 and clusterin proteins were quantitated using Western blot analysis. In the third part, the rats received either 100 µl of blood or 100 µl of blood plus 10 µg of N-acetylheparin (a complement activation inhibitor). Then they were killed 24 or 72 hours later for measurement of brain water and ion contents. It was demonstrated on Western blot analysis that there had been a sixfold increase in C9 around the hematoma 24 hours after the infusion of 100 µl of autologous blood. Marked perihematomal C9 immunoreactivity was detected at 72 hours. Clusterin also increased after ICH and was expressed in neurons 72 hours later. The addition of N-acetylheparin significantly reduced brain edema formation in the ipsilateral basal ganglia at 24 hours (78.5 ± 0.5% compared with 81.6 ± 0.8% in control animals, p < 0.001) and at 72 hours (80.9 ± 2.2% compared with 83.6 ± 0.9% in control animals, p < 0.05) after ICH.Conclusions. It was found that ICH causes complement activation in the brain. Activation of complement and the formation of membrane attack complex contributes to brain edema formation after ICH. Blocking the complement cascade could be an important step in the therapy for ICH.


2001 ◽  
Vol 95 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Tetsuya Masada ◽  
Ya Hua ◽  
Guohua Xi ◽  
Guo-Yuan Yang ◽  
Julian T. Hoff ◽  
...  

Object. Adenovirus-mediated overexpression of interleukin-1 receptor antagonist (IL-1ra) attenuates the inflammatory reaction and brain injury that follows focal cerebral ischemia. Recently, an inflammatory reaction after intracerebral hemorrhage (ICH) was identified. In this study the authors examine the hypothesis that overexpression of IL-1ra reduces brain injury (specifically edema formation) after ICH. Methods. Adenoviruses expressing IL-1ra (Ad.RSVIL-1ra) or LacZ, a control protein (Ad.RSVlacZ), or saline were injected into the left lateral cerebral ventricle in rats. On the 5th day after virus injection, 100 µl of autologous blood or 5 U thrombin was infused into the right basal ganglia. Rats with ICH were killed 24 or 72 hours later for measurement of brain water and ion content. Thrombin-treated rats were killed 24 hours later for edema measurements and an assessment of polymorphonuclear leukocyte (PMNL) infiltration by myeloperoxidase (MPO) assay, as well as histological evaluation. Compared with saline-treated and Ad.RSVlacZ—transduced controls, Ad.RSVIL-1ra-transduced rats had significantly attenuated edema in the ipsilateral basal ganglia 3 days after ICH (81.5 ± 0.3% compared with 83.4 ± 0.4% and 83.3 ± 0.5% in control animals). Thrombin-induced brain edema was also reduced in Ad.RSVIL-1ra—treated rats (81.3 ± 0.4% compared with 83.2 ± 0.4% and 82.5 ± 0.4% in control rats). The reduction in thrombin-induced edema was associated with a reduction in PMNL infiltration into the basal ganglia, as assessed by MPO assay (49% reduction) and histological examination. Conclusions. Overexpression of IL-1ra by using an adenovirus vector attenuated brain edema formation and thrombin-induced intracerebral inflammation following ICH. The reduction in ICH-induced edema with IL-1ra may result from reduction of thrombin-induced brain inflammation.


1991 ◽  
Vol 74 (5) ◽  
pp. 773-780 ◽  
Author(s):  
Andreas Unterberg ◽  
Walter Schmidt ◽  
Michael Wahl ◽  
Earl F. Ellis ◽  
Anthony Marmarou ◽  
...  

✓ Leukotrienes are powerful metabolites of arachidonic acid which are known to increase the permeability of peripheral blood vessels. These substances are found in brain tissue in association with cerebral ischemia, and in brain tumors. Therefore, it has been proposed that leukotrienes have a mediator function in brain edema. This hypothesis was subjected to further experimental analysis in this study, in which the authors investigated whether: 1) superfusion of the exposed brain surface with leukotrienes increases the permeability of extraparenchymal blood vessels in vivo; 2) intraparenchymal infusion of leukotrienes induces brain edema; and 3) pharmacological inhibition of leukotriene formation by BW755C, an inhibitor of leukotriene synthesis, reduces formation of brain edema from a standardized traumatic insult. The pial vessels of the parietal cortex of cats were examined by fluorescence microscopy during cerebral superfusion with the leukotrienes C4 (LTC4), D4 (LTD4), or E4 (LTE4) by using an open cranial window preparation. Intravenous Na+-fluorescein served as an in vivo blood-brain barrier (BBB) indicator. Superfusion of the pia with leukotrienes (up to 2 µM) did not open the barrier to fluorescein, but was associated with a significant constriction (up to 25%) of arterial and venous vessels. In experiments with slow infusion of leukotriene B4 (LTB4) or LTC4 into the white matter of feline brain, the tissue water content was subsequently determined in serial brain slices using the specific gravity method. Tissue water profiles obtained after a 15- µM infusion of either LTB4 or LTC4 were virtually identical with those of control animals infused with mock cerebrospinal fluid. Thus, neither LTB4 nor LTC4 led to an augmentation of infusion-induced brain edema. In a final series, a cold lesion of the left parietal cortex was induced in rabbits. Twenty-four hours later, swelling of the exposed hemisphere was quantified by gravimetrical comparison of its weight with that of the contralateral nontraumatized hemisphere. Eight animals received BW755C intravenously prior to and after trauma to inhibit formation of leukotrienes. Seven rabbits were infused with an equivalent volume of saline as a control study. The resulting hemispheric swelling was 7.7% ± 0.6% (mean ± standard error of the mean) 24 hours later in animals receiving BW755C and 7.8% ± 1.2% in the control group, indicating that inhibition of leukotrienes was ineffective in preventing formation of vasogenic brain edema. The findings demonstrate that leukotrienes administered to the brain in concentrations occurring under pathological conditions do not open the BBB nor do they induce brain edema. Moreover, formation of brain edema from a standard insult was not therapeutically influenced by inhibition of leukotriene synthesis. Thus, the current findings taken together do not support a role of leukotrienes as mediators in brain edema.


1995 ◽  
Vol 83 (6) ◽  
pp. 1045-1050 ◽  
Author(s):  
Kevin R. Lee ◽  
A. Lorris Betz ◽  
Richard F. Keep ◽  
Thomas L. Chenevert ◽  
Seoung Kim ◽  
...  

✓ Purified thrombin from an exogenous source is a hemostatic agent commonly used in neurosurgical procedures. The toxicity of thrombin in the brain, however, has not been examined. This study was performed to assess the effect of thrombin on brain parenchyma, using the formation of brain edema as an indicator of injury. Ten µl of test solution was infused stereotactically into the right basal ganglia of rats. The animals were sacrificed 24 hours later, and the extent of brain edema and ion content were measured. Concentrations of human thrombin as low as 1 U/µl resulted in a significant increase in brain water content. Rats receiving 10 U/µl had a mortality rate of 33% compared to no mortality in the groups receiving smaller doses. Thrombin-induced brain edema was inhibited by a specific and potent thrombin inhibitor, hirudin. A medical grade of bovine thrombin commonly used in surgery also caused brain edema when injected at a concentration of 2 U/µl. Edema formation was prevented by another highly specific thrombin inhibitor, Nα-(2-Naphthalenesulfonylglycyl)-4-dl-phenylalaninepiperidide (α-NAPAP). Thrombininduced brain edema was accompanied by increases in brain sodium and chloride contents and a decrease in brain potassium content. Changes in brain ions were inhibited by both hirudin and α-NAPAP, corresponding to the inhibition of brain water accumulation. This study shows that thrombin causes brain edema when infused into the brain at concentrations as low as 1 U/µl, an amount within the range of concentrations used for topical hemostasis in neurosurgery.


1998 ◽  
Vol 89 (6) ◽  
pp. 991-996 ◽  
Author(s):  
Guohua Xi ◽  
Richard F. Keep ◽  
Julian T. Hoff

Object. The mechanisms of brain edema formation following spontaneous intracerebral hemorrhage (ICH) are not well understood. In previous studies, no significant edema formation has been found 24 hours after infusion of packed red blood cells (RBCs) into the brain of a rat or pig; however, there is evidence that hemoglobin can be neurotoxic. In this study, the authors reexamined the role of RBCs and hemoglobin in edema formation after ICH. Methods. The experiments involved infusion of whole blood, packed RBCs, lysed RBCs, rat hemoglobin, or thrombin into the right basal ganglia of Sprague—Dawley rats. The animals were killed at different time points and brain water and ion contents were measured. The results showed that lysed autologous erythrocytes, but not packed erythrocytes, produced marked brain edema 24 hours after infusion and that this edema formation could be mimicked by hemoglobin infusion. Although infusion of packed RBCs did not produce dramatic brain edema during the first 2 days, it did induce a marked increase in brain water content 3 days postinfusion. Edema formation following thrombin infusion peaked at 24 to 48 hours. This is earlier than the peak in edema formation that follows ICH, suggesting that there is a delayed, nonthrombin-mediated, edemogenic component of ICH. Conclusions. These results demonstrate that RBCs play a potentially important role in delayed edema development after ICH and that RBC lysis and hemoglobin toxicity may be useful targets for therapeutic intervention.


1996 ◽  
Vol 85 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Zeev Feldman ◽  
Boris Gurevitch ◽  
Alan A. Artru ◽  
Arieh Oppenheim ◽  
Esther Shohami ◽  
...  

✓ Excitatory amino acids (EAA), mainly glutamate and aspartate, are released in excessive amounts from terminals of ischemic or traumatically injured neurons. These excessive levels of EAAs initiate a cascade of events believed to lead to secondary delayed damage to the surrounding brain. The N-methyl-d-aspartate receptor antagonists MK-801 and ketamine are reported to suppress excessive EAA release and to attenuate the development of focal brain edema following neuronal injury. Magnesium is also reported to work at the postsynaptic receptor to reduce the neurotoxic effect of glutamate. The present study was undertaken to examine the effect of postinjury treatment with Mg++ on brain edema and neurological outcome after traumatic brain injury. Sixty-nine rats that survived halothane anesthesia and closed head trauma (CHT) were randomly assigned to one of seven experimental groups: sham, CHT, and CHT with administration of Mg++ 1 hour postinjury. At 48 hours, brain tissue Mg++ concentration (calculated from optical density using a standard curve) was significantly increased compared to baseline levels (10.06 ± 2.44 mg/g vs. 6.83 ± 0.81 mg/g, p < 0.01 calculated by one-way analysis of variance). Also at 48 hours postinjury, brain tissue specific gravity in the contused hemisphere of Mg++-treated rats was significantly greater than that in the contused hemisphere of untreated rats, indicating attenuation of brain edema formation by Mg++. The neurological severity score (NSS) of rats treated with Mg++ improved significantly at both 18 and 48 hours, compared to baseline values obtained 1 hour after CHT but prior to administration of Mg++ (11.2 ± 2.5 vs. 15.2 ± 4.1, p = 0.03; and 12.3 ± 6.1 vs. 17.3 ± 3.6, p = 0.004, respectively). In the untreated groups, the NSS at 18 and 48 hours was not significantly different from baseline values (that is, no neurological improvement). The present study indicates that postinjury treatment with Mg++ attenuates brain edema formation and improves neurological outcome after experimental CHT.


1974 ◽  
Vol 41 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Stanley R. Nelson

✓ Cold-induced hemorrhagic infarcts in mice caused a spreading decrease in tissue specific gravity around the lesion; the decrease in tissue density represents an increase in edema fluid. The maximum decrease in density in most brain areas had occurred by 6 hours. This time period was used to evaluate the effect of nine drugs on brain edema. Two agents increased edema formation: hexamethonium and meralluride. Metaraminol, cortisone, hydrocortisone, acetazolamide, and dextran did not significantly alter edema formation. Only in the phenoxybenzamine- and urea-treated mice was brain edema less than in the control mice.


1994 ◽  
Vol 81 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Guo-Yuan Yang ◽  
A. Lorris Betz ◽  
Thomas L. Chenevert ◽  
James A. Brunberg ◽  
Julian T. Hoff

✓ There have been few investigations of brain edema formation after intracerebral hemorrhage (ICH), despite the fact that mass effect and edema are important clinical complications. The present study was designed to investigate the time course for the formation and resolution of brain edema and to determine how changes in cerebral blood flow (CBF) and blood-brain barrier (BBB) permeability are temporally related to edema formation following ICH. Anesthetized adult rats received a sterile injection of 100 µl of autologous blood into the caudate nucleus. Water and ion contents were measured immediately, at 4 and 12 hours, and daily to Day 7 (10 time points, six rats at each time) after experimental ICH. The water content of the ipsilateral basal ganglia increased progressively (p < 0.002) over the first 24 hours, then remained constant until after Day 5, when the edema began to resolve. Edema was most severe in the tissue immediately surrounding the hemorrhage; however, it was also present in the ipsilateral cortex, the contralateral cortex, and the basal ganglia. Measurements of local CBF (using [14C]-iodoantipyrine) and BBB permeability (using [3H]-α-aminoisobutyric acid) were obtained in separate groups of six to eight rats at various time intervals between 1 and 48 hours after ICH. Cerebral blood flow was reduced to 50% of control at 1 hour, returned to control values by 4 hours, but then decreased to less than 50% of control between 24 and 48 hours after ICH. The BBB permeability increased significantly prior to the occurrence of significant edema in the tissue surrounding the clot. However, BBB permeability in the more distant structures remained normal despite the development of edema. These results demonstrate a time course for the formation and resolution of brain edema following ICH similar to that observed during focal ischemia. Brain edema forms in the immediate vicinity of the clot as a result of both BBB disruption and the local generation of osmotically active substances and then spreads to adjacent structures. While local ischemia, due to the mass effect of the hemorrhage, may play a role in producing cytotoxic and vasogenic edema, the release of toxic substances from the clot should also be considered. Since edema is nearly maximal by 24 hours after ICH, therapy directed at reducing edema formation must be instituted within the 1st day.


1973 ◽  
Vol 38 (6) ◽  
pp. 739-742 ◽  
Author(s):  
Barry A. Siegel ◽  
Rebecca K. Studer ◽  
E. James Potchen

✓ The authors report that brain edema following cerebral microembolism in rats is accompanied by significant increases in brain sodium and cerebral 22Na uptake. Their results suggest that in vivo measurement of brain 22Na uptake may be useful for the detection of cerebral edema.


2000 ◽  
Vol 92 (5) ◽  
pp. 853-859 ◽  
Author(s):  
John F. Stover ◽  
Nils-Kristian Dohse ◽  
Andreas W. Unterberg

Object. Identification of new therapeutic agents aimed at attenuating posttraumatic brain edema formation remains an unresolved challenge. Among others, activation of bradykinin B2 receptors is known to mediate the formation of brain edema. The purpose of this study was to investigate the protective effect of the novel nonpeptide B2 receptor antagonist, LF 16-0687Ms, in brain-injured rats.Methods. Focal contusion was produced by controlled cortical impact injury. Five minutes after trauma, the rats received a single dose of no, low- (3 mg/kg body weight), or high- (30 mg/kg) dose LF 16-0687Ms. After 24 hours, the amount of brain swelling and hemispheric water content were determined. Low and high doses of LF 16-0687Ms significantly reduced brain swelling by 25% and 27%, respectively (p < 0.03). Hemispheric water content tended to be increased in the nontraumatized hemisphere.In a subsequent series of 10 rats, cisternal cerebrospinal fluid (CSF) samples were collected to determine whether changes in substances associated with edema formation could clarify why LF 16-0687Ms increases water content. For this, the volume regulator amino acid taurine, the excitatory transmitter glutamate, and the adenosine triphosphate degradation products hypoxanthine and xanthine were measured. In CSF, the levels of taurine, hypoxanthine, and xanthine were significantly decreased following a single administration of LF 16-0687Ms (p < 0.005); the level of glutamate, however, was double that found in control animals (p < 0.05).Conclusions. Using the present study design, a single administration of LF 16-0687Ms successfully reduced posttraumatic brain swelling. The decreased levels of taurine, hypoxanthine, and xanthine may reflect reduced posttraumatic brain edema, whereas the increased level of glutamate could account for the elevated water content observed in the nontraumatized hemisphere.


Sign in / Sign up

Export Citation Format

Share Document