Influence of apoptosis on neurological outcome following traumatic cerebral contusion

2004 ◽  
Vol 101 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Narendra Nathoo ◽  
Pradeep K. Narotam ◽  
Devendra K. Agrawal ◽  
Catherine A. Connolly ◽  
James R. van Dellen ◽  
...  

Object. Apoptosis has increasingly been implicated in the pathobiology of traumatic brain injury (TBI). The present study was undertaken to confirm the presence of apoptosis in the periischemic zone (PIZ) of traumatic cerebral contusions and to determine the role of apoptosis, if any, in neurological outcome. Methods. Brain tissue harvested at Wentworth Hospital from the PIZ in 29 patients with traumatic supratentorial contusions was compared with brain tissue resected in patients with epilepsy. Immunohistochemical analyses were performed on the tissues to see if they contained the apoptosis-related proteins p53, bcl-2, bax, and caspase-3. The findings were then correlated to demographic, clinical, surgical, neuroimaging, and outcome data. In the PIZ significant increases of bax (18-fold; p < 0.005) and caspase-3 (20-fold; p < 0.005) were recorded, whereas bcl-2 was upregulated in only 14 patients (48.3%; 2.9-fold increase) compared with control tissue. Patients in the bcl-2—positive group exhibited improved outcomes at the 18-month follow-up examination despite an older mean age and lower mean admission Glasgow Coma Scale score (p < 0.03). Caspase-3 immunostaining was increased in those patients who died (Glasgow Outcome Scale [GOS] Score 1, 12 patients) when compared with those who experienced a good outcome (GOS Score 4 or 5, 17 patients) (p < 0.005). Regression analysis identified bcl-2—negative status (p < 0.04, odds ratio [OR] 5.5; 95% confidence interval [CI] 1.1–28.4) and caspase-3—positive status (p < 0.01, OR 1.4, 95% CI 1.1—1.8) as independent predictors of poor outcome. No immunostaining for p53 was recorded in the TBI specimens. Conclusions. The present findings confirm apoptosis in the PIZ of traumatic cerebral contusions and indicate that this form of cell death can influence neurological outcome following a TBI.

1996 ◽  
Vol 85 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Zeev Feldman ◽  
Boris Gurevitch ◽  
Alan A. Artru ◽  
Arieh Oppenheim ◽  
Esther Shohami ◽  
...  

✓ Excitatory amino acids (EAA), mainly glutamate and aspartate, are released in excessive amounts from terminals of ischemic or traumatically injured neurons. These excessive levels of EAAs initiate a cascade of events believed to lead to secondary delayed damage to the surrounding brain. The N-methyl-d-aspartate receptor antagonists MK-801 and ketamine are reported to suppress excessive EAA release and to attenuate the development of focal brain edema following neuronal injury. Magnesium is also reported to work at the postsynaptic receptor to reduce the neurotoxic effect of glutamate. The present study was undertaken to examine the effect of postinjury treatment with Mg++ on brain edema and neurological outcome after traumatic brain injury. Sixty-nine rats that survived halothane anesthesia and closed head trauma (CHT) were randomly assigned to one of seven experimental groups: sham, CHT, and CHT with administration of Mg++ 1 hour postinjury. At 48 hours, brain tissue Mg++ concentration (calculated from optical density using a standard curve) was significantly increased compared to baseline levels (10.06 ± 2.44 mg/g vs. 6.83 ± 0.81 mg/g, p < 0.01 calculated by one-way analysis of variance). Also at 48 hours postinjury, brain tissue specific gravity in the contused hemisphere of Mg++-treated rats was significantly greater than that in the contused hemisphere of untreated rats, indicating attenuation of brain edema formation by Mg++. The neurological severity score (NSS) of rats treated with Mg++ improved significantly at both 18 and 48 hours, compared to baseline values obtained 1 hour after CHT but prior to administration of Mg++ (11.2 ± 2.5 vs. 15.2 ± 4.1, p = 0.03; and 12.3 ± 6.1 vs. 17.3 ± 3.6, p = 0.004, respectively). In the untreated groups, the NSS at 18 and 48 hours was not significantly different from baseline values (that is, no neurological improvement). The present study indicates that postinjury treatment with Mg++ attenuates brain edema formation and improves neurological outcome after experimental CHT.


2002 ◽  
Vol 96 (6) ◽  
pp. 1013-1019 ◽  
Author(s):  
Rupert Kett-White ◽  
Peter J. Hutchinson ◽  
Pippa G. Al-Rawi ◽  
Marek Czosnyka ◽  
Arun K. Gupta ◽  
...  

Object. The aim of this study was to investigate potential episodes of cerebral ischemia during surgery for large and complicated aneurysms, by examining the effects of arterial temporary clipping and the impact of confounding variables such as blood pressure and cerebrospinal fluid (CSF) drainage. Methods. Brain tissue PO2, PCO2, and pH, as well as temperature and extracellular glucose, lactate, pyruvate, and glutamate were monitored in 46 patients by using multiparameter sensors and microdialysis. Baseline data showed that brain tissue PO2 decreased significantly, below a mean arterial pressure (MAP) threshold of 70 mm Hg. Further evidence of its relationship with cerebral perfusion pressure was shown by an increase in mean brain tissue PO2 after drainage of CSF from the basal cisterns (Wilcoxon test, p < 0.01). Temporary clipping was required in 31 patients, with a mean total duration of 14 minutes (range 3–52 minutes), causing brain tissue PO2 to decrease and brain tissue PCO2 to increase (Wilcoxon test, p < 0.01). In patients in whom no subsequent infarction developed in the monitored region, brain tissue PO2 fell to 11 mm Hg (95% confidence interval 8–14 mm Hg). A brain tissue PO2 level below 8 mm Hg for 30 minutes was associated with infarction in any region (p < 0.05 according to the Fisher exact test); other parameters were not predictive of infarction. Intermittent occlusions of less than 30 minutes in total had little effect on extracellular chemistry. Large glutamate increases were only seen in two patients, in both of whom brain tissue PO2 during occlusion was continuously lower than 8 mm Hg for longer than 38 minutes. Conclusions. The brain tissue PO2 decreases with hypotension, and, when it is below 8 mm Hg for longer than 30 minutes during temporary clipping, it is associated with increasing extracellular glutamate levels and cerebral infarction.


2000 ◽  
Vol 93 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Michael Bitzer ◽  
Thomas Nägele ◽  
Beverly Geist-Barth ◽  
Uwe Klose ◽  
Eckardt Grönewäller ◽  
...  

Object. In a prospective study, 28 patients with 32 intracranial meningiomas were examined to determine the role of hydrodynamic interaction between tumor and surrounding brain tissue in the pathogenesis of peritumoral brain edema.Methods. Gadolinium—diethylenetriamine pentaacetic acid (Gd-DPTA), an extracellular contrast agent used for routine clinical imaging, remains strictly extracellular without crossing an intact blood—brain barrier. Therefore, it is well suited for investigations of hydrodynamic extracellular mechanisms in the development of brain edema. Spin-echo T1-weighted magnetic resonance images were acquired before and after intravenous administration of 0.2 mmol/kg Gd-DPTA. Additional T1-weighted imaging was performed 0.6, 3.5, and 6.5 hours later. No significant Gd-DPTA diffused from tumor into peritumoral brain tissue in 12 meningiomas without surrounding brain edema. In contrast, in 17 of 20 meningiomas with surrounding edema, contrast agent in peritumoral brain tissue was detectable after 3.5 hours and 6.5 hours. In three of 20 meningiomas with minimum surrounding edema (< 5 cm3), contrast agent effusion was absent. After 3.5 hours and 6.5 hours strong correlations of edema volume and the maximum distance of contrast spread from the tumor margin into adjacent brain parenchyma (r = 0.84 and r = 0.87, respectively, p < 0.0001) indicated faster effusion in larger areas of edema.Conclusions. The results of this study show that significant contrast agent effusion from the extracellular space of the tumor into the interstitium of the peritumoral brain tissue is only found in meningiomas with surrounding edema. This supports the hypothesis that hydrodynamic processes play an essential role in the pathogenesis of peritumoral brain edema in meningiomas.


2002 ◽  
Vol 96 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Arun K. Gupta ◽  
Peter J. Hutchinson ◽  
Tim Fryer ◽  
Pippa G. Al-Rawi ◽  
Dot A. Parry ◽  
...  

Object. The benefits of measuring cerebral oxygenation in patients with brain injury are well accepted; however, jugular bulb oximetry, which is currently the most popular monitoring technique used has several shortcomings. The goal of this study was to validate the use of a new multiparameter sensor that measures brain tissue oxygenation and metabolism (Neurotrend) by comparing it with positron emission tomography (PET) scanning. Methods. A Neurotrend sensor was inserted into the frontal region of the brain in 19 patients admitted to the neurointensive care unit. After a period of stabilization, the patients were transferred to the PET scanner suite where C15O, 15O2, and H215O PET scans were obtained to facilitate calculation of regional cerebral blood volume, O2 metabolism, blood flow, and O2 extraction fraction (OEF). Patients were given hyperventilation therapy to decrease arterial CO2 by approximately 1 kPa (7.5 mm Hg) and the same sequence of PET scans was repeated. For each scanning sequence, end-capillary O2 tension (PvO2) was calculated from the OEF and compared with the reading of brain tissue O2 pressure (PbO2) provided by the sensor. In three patients the sensor was inserted into areas of contusion and these patients were eliminated from the analysis. In the subset of 16 patients in whom the sensor was placed in healthy brain, no correlation was found between the absolute values of PbO2 and PvO2 (r = 0.2, p = 0.29); however a significant correlation was obtained between the change in PbO2 (ΔPbO2) and the change in PvO2 (ΔPvO2) produced by hyperventilation in a 20-mm region of interest around the sensor (ρ = 0.78, p = 0.0035). Conclusions. The lack of correlation between the absolute values of PbO2 and PvO2 indicates that PbO2 cannot be used as a substitute for PvO2. Nevertheless, the positive correlation between ΔPbO2 and ΔPvO2 when the sensor had been inserted into healthy brain suggests that tissue PO2 monitoring may provide a useful tool to assess the effect of therapeutic interventions in brain injury.


1986 ◽  
Vol 65 (6) ◽  
pp. 863-870 ◽  
Author(s):  
Vincent C. Traynelis ◽  
Gary D. Marano ◽  
Ralph O. Dunker ◽  
Howard H. Kaufman

✓ Traumatic atlanto-occipital dislocation is a serious injury that is usually fatal. The number of patients surviving this injury, however, appears to be increasing, and most of these survivors are children. This may reflect an improvement in emergency transport services. Seventeen previously reported cases of patients surviving atlanto-occipital dislocation for more than 48 hours are reviewed and an additional case is presented. Many of these patients had an excellent neurological outcome. The radiographic criteria necessary for the diagnosis of atlanto-occipital dislocation are discussed. Cervical computerized tomography may confirm the diagnosis when necessary. It is suggested that there are three types of atlanto-occipital dislocation; utilizing this new classification, a rationale for treatment is described. Fusion is favored for long-term stability.


2003 ◽  
Vol 98 (4) ◽  
pp. 751-763 ◽  
Author(s):  
H. Gregor Wieser ◽  
Marcos Ortega ◽  
Alon Friedman ◽  
Yasuhiro Yonekawa

Object. Analyses of the results of surgery for epilepsy are hindered by inconsistent classifications of seizure outcome, small numbers of patients, and short postoperative follow-up periods. The authors conducted a retrospective study with a reassessment of the long-term seizure outcomes in patients who underwent selective amygdalohippocampectomy (SelAH) for pharmacotherapy—resistant mesial temporal lobe epilepsy (MTLE) at the Zurich University Hospital from 1975 to 1999. Methods. Year-by-year data and the last available data on seizure outcomes were retrospectively assessed for 369 consecutively surgically treated patients who had participated in a follow-up period longer than 1 year as of 1999 and whose outcomes were classified according to the Engel scale and the proposed new International League Against Epilepsy (ILAE) scale. Patients were grouped into nonlesional and lesional MTLE groups depending on whether they harbored a gross anatomical lesion that caused the MTLE. Differentiation was made between curative and palliative operations. Complications related to surgery are reported for 453 patients who underwent SelAH and participated in more than 3 months of follow-up review. The last available outcome data according to the Engel scale were found to be generally similar to those of the new ILAE classification, with 66.9% of patients free from disabling seizures (Engel Class I) compared with 57.1% who were completely seizure and aura free (ILAE Class 1). The last available data on seizure outcome were not significantly different between patients in the lesional and nonlesional MTLE groups. In the lesional group, seizure outcomes were significantly better when patients underwent surgery early in the course of the disease. Overall, 70% of the patients received reductions in their antiepileptic drug treatment at the time of the last available follow-up review. Complications related to the surgical procedures were rare. Conclusions. The authors conclude that SelAH is a safe and effective surgical procedure for MTLE.


1998 ◽  
Vol 88 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Andreas Gruber ◽  
Andrea Reinprecht ◽  
Harald Görzer ◽  
Peter Fridrich ◽  
Thomas Czech ◽  
...  

Object. This observational study is based on a consecutive series of 207 patients with aneurysmal subarachnoid hemorrhage who were treated within 7 days of their most recent bleed. The purpose of the study was to evaluate the effect of respiratory failure on neurological outcome. Methods. Pulmonary function was assessed by determination of parameters describing pulmonary oxygen transport and exchange, by using composite scores for quantification of lung injury (lung injury score [LIS]) and mechanical ventilator settings (PIF score). Pulmonary function was related to the Hunt and Hess (H & H) grade assigned to the patient at hospital admission (p < 0.001). The pattern and time course of lung injury differed significantly between patients with H & H Grade I or II, Grade III, and Grade IV or V. Hunt and Hess grade, Fisher computerized tomography grade, intracranial pressure, cerebral perfusion pressure, LIS, ratio of PaO2 to the fraction of inspired oxygen (FiO2), and the ratio of the alveolar-minus-arterial oxygen tension difference (AaDO2) to FiO2 were related to neurological outcome (p < 0.001). The LIS on the day of maximum lung injury remained an independent predictor of outcome (p = 0.01) in a stepwise logistic regression analysis. The probability of poor neurological outcome significantly increased with both decreasing cerebral perfusion pressure and increasing severity of lung injury. Conclusions. The overall mortality rate was 22.2% (46 of 207 patients). Subarachnoid hemorrhage and its neurological sequelae accounted for the principal mortality in this series. Medical (nonneurological and nontreatment-related) complications accounted for 37% of all deaths. Systemic inflammatory response syndrome with associated multiple organ dysfunction syndrome was the leading cause of death from medical complications. The authors conclude that respiratory failure is related to neurological outcome, although it is not commonly the primary cause of death from medical complications.


2002 ◽  
Vol 96 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Roberto Imberti ◽  
Guido Bellinzona ◽  
Martin Langer

Object. The aim of this study was to investigate the effects of moderate hyperventilation on intracranial pressure (ICP), jugular venous oxygen saturation ([SjvO2], an index of global cerebral perfusion), and brain tissue PO2 (an index of local cerebral perfusion). Methods. Ninety-four tests consisting of 20-minute periods of moderate hyperventilation (27–32 mm Hg) were performed on different days in 36 patients with severe traumatic brain injury (Glasgow Coma Scale score ≤ 8). Moderate hyperventilation resulted in a significant reduction in average ICP, but in seven tests performed in five patients it was ineffective. The response of SjvO2 and brain tissue PO2 to CO2 changes was widely variable and unpredictable. After 20 minutes of moderate hyperventilation in most tests (79.8%), both SjvO2 and brain tissue PO2 values remained above the lower limits of normality (50% and 10 mm Hg, respectively). In contrast, in 15 tests performed in six patients (16.6% of the studied population) brain tissue PO2 decreased below 10 mm Hg although the corresponding SjvO2 values were greater than 50%. The reduction of brain tissue PO2 below 10 mm Hg was favored by the low prehyperventilation values (10 tests), higher CO2 reactivity, and, possibly, by lower prehyperventilation values of cerebral perfusion pressure. In five of those 15 tests, the prehyperventilation values of SjvO2 were greater than 70%, a condition of relative hyperemia. The SjvO2 decreased below 50% in four tests; the corresponding brain tissue PO2 values were less than 10 mm Hg in three of those tests, whereas in the fourth, the jugular venous O2 desaturation was not detected by brain tissue PO2. The analysis of the simultaneous relative changes (prehyperventilation — posthyperventilation) of SjvO2 and brain tissue PO2 showed that in most tests (75.5%) there was a reduction of both SjvO2 and brain tissue PO2. In two tests moderate hyperventilation resulted in an increase of both SjvO2 and brain tissue PO2. In the remaining 17 tests a redistribution of the cerebral blood flow was observed, leading to changes in SjvO2 and brain tissue PO2 in opposite directions. Conclusions. Hyperventilation, even if moderate, can frequently result in harmful local reductions of cerebral perfusion that cannot be detected by assessing SjvO2. Therefore, hyperventilation should be used with caution and should not be considered safe. This study confirms that SjvO2 and brain tissue PO2 are two parameters that provide complementary information on brain oxygenation that is useful to reduce the risk of secondary damage. Changes in SjvO2 and brain tissue PO2 in opposite directions indicate that data obtained from brain tissue PO2 monitoring cannot be extrapolated to evaluate the global cerebral perfusion.


1987 ◽  
Vol 67 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Isabelle M. Germano ◽  
Henry M. Bartkowski ◽  
Mary E. Cassel ◽  
Lawrence H. Pitts

✓ Recent studies suggest that nimodipine, a potent calcium-channel antagonist that causes significant cerebrovascular dilatation, may improve neurological outcome after acute experimental permanent focal cerebral ischemia when given before or immediately after occlusion of the middle cerebral artery (MCA) in various animals. The authors describe the effect of nimodipine on cerebral ischemia in a rat model. At 1,4, or 6 hours after occlusion of the MCA, rats were treated in a double-blind technique with either nimodipine, placebo, or saline. Neurological and neuropathological evaluation was performed at 24 hours. Neurological outcome was better in rats treated with nimodipine 1, 4, or 6 hours after occlusion (p < 0.001, p < 0.01, p < 0.05, respectively), and the size of areas of infarction was statistically smaller in nimodipine-treated groups (p < 0.01, p < 0.01, p < 0.05, respectively) when compared with control rats treated with saline or placebo. The best neurological outcome and the smallest area of infarction were found in nimodipine-treated rats 1 hour after occlusion. Compared with controls, the size of the periphery of the infarcted area was smaller in nimodipine-treated rats. The results show that nimodipine improves neurological outcome and decreases the size of infarction when administered up to 6 hours after ischemic insult. These results suggest a possible mechanism of action of nimodipine on the “penumbra” of the ischemic area.


2003 ◽  
Vol 98 (4) ◽  
pp. 837-845 ◽  
Author(s):  
Lilly Tang ◽  
Mary Mantle ◽  
Paul Ferrari ◽  
Hagen Schiffbauer ◽  
Howard A. Rowley ◽  
...  

Object. The aim of this study was to evaluate the spatial accuracy of interictal magnetoencephalography (MEG) in localizing the primary epileptogenic focus in comparison with alternative MEG-derived estimates such as ictal onset recording or sensory mapping of the periphery where seizures manifest. Methods. During this retrospective study of 12 patients with epilepsy who had undergone successful magnetic source (MS) imaging with the aid of a dual 37-channel biomagnetometer as well as simultaneous MEG/electroencephalography (EEG) recordings, ictal events were observed in five patients and quantitative comparisons of interictal spike and ictal seizure onset source localizations were made. In the eight patients who had presented with sensorimotor seizure, source localization of cortical sites concordant with seizure foci was determined using somatosensory functional mapping, and the results were quantitatively compared with interictal spike source localizations. Interictal spike sources demonstrated on MEG localized to the same region as the corresponding ictal event or somatosensory source localizations. The mean distance between the ictal foci and interictal spike sources was 1.1 ± 0.3 cm. Results of functional somatosensory mapping in patients with sensorimotor seizures demonstrated that seizure sources consistently colocalized with interictal MEG spike sources, with a mean distance of 1.5 ± 0.4 cm. No systematic directional bias was observed. Interictal sources tended to be tightly clustered, and the mean ellipsoid volume, defined by one standard deviation of the source spatial coordinates, was 1 cm3. Conclusions. Interictal spike localizations on MEG were concordant with ictal and, where relevant, functional somatosensory mapping localizations. These findings support the interpretation of interictal spikes on MEG as a useful and effective noninvasive method for localizing primary seizure foci.


Sign in / Sign up

Export Citation Format

Share Document