Endoscopic third ventriculostomy in the management of obstructive hydrocephalus: an outcome analysis

2004 ◽  
Vol 100 (4) ◽  
pp. 626-633 ◽  
Author(s):  
Hailong Feng ◽  
Guangfu Huang ◽  
Xiaoling Liao ◽  
Kai Fu ◽  
Haibin Tan ◽  
...  

Object. The purpose of this paper is to elucidate the safety and efficacy of, and indications and outcome prognosis for endoscopic third ventriculostomy (ETV) in 58 patients with obstructive hydrocephalus. Methods. Between September 1999 and April 2003, 58 ETVs were performed in 58 patients with obstructive hydrocephalus (36 male and 22 female patients) at the authors' institution. The ages of the patients ranged from 5 to 67 years (mean age 35 years) and the follow-up period ranged from 3 to 41 months (mean duration of follow up 24 months). Patients were divided into four subgroups based on the cause of the obstructive hydrocephalus: 21 with intracranial tumors; 11 with intracranial cysts; 18 with aqueductal stenosis; and eight with intracranial hemorrhage or infection. Both univariate and multi-variate statistical analyses were performed to assess the prognostic relevance of the cause of the obstructive hydrocephalus, early postoperative clinical appearance, and neuroimaging findings in predicting the result of the ETV. The survival rate was 87% at the end of the 1st year and 84% at the end of the 2nd year post-ETV. One month after ETV an overall clinical improvement was observed in 45 (77.6%) of 58 patients. If we also consider the successful revision of ETV in two patients, a success rate of 78.3% (47 of 60 patients) was reached. The ETV was successful in 17 (81%) of 21 patients with intracranial tumors, nine (82%) of 11 with cystic lesions, 16 (88.9%) of 18 with aqueductal stenosis, and three (38%) of eight with intracranial hemorrhage or infection. A Kaplan—Meier analysis illustrates that the percentage of functioning ETVs stabilizes between 75 and 80% 1 year after the operation. In a comparison of results 1 year after ETV, the authors found that the aqueductal stenosis subgroup had the highest proportion of functioning ETV (89%). The proportions of the tumor and cyst subgroups were 84 and 82%, respectively, whereas the proportion was only 50% in the ventriculitis/intracranial hemorrhage subgroup (strata log-rank test: χ2 = 7.93, p = 0.0475). In the present study, ETV failed in eight patients (13.8%) and the time to failure after the procedure was a mean of 3.4 months (median 2 months, range 0–8 months). The logistic regression analysis confirmed an early postoperative improvement (within 2 weeks after ETV, significance [Sig] of log likelihood ratio [LLR] < 0.0001) and a patent stoma on cine phase—contrast magnetic resonance (MR) images (Sig of LLR = 0.0002) were significant prognostic factors for a successful ETV. The results demonstrated the multivariate model (B = − 53.7309, standard error = 325.1732, Wald = 0.0273, Sig = 0.8688) could predict a correct result in terms of success or failure from ETV surgery in 89.66% of observed cases. The Pearson chi-square test demonstrated that little reliance could be placed on the finding of a reduced size of the lateral ventricle (χ2 = 5.305, p = 0.07) on neuroimaging studies within 2 weeks after ETV, but it became a significant predictive factor at 3 months (χ2 = 8.992, p = 0.011) and 6 months (χ2 = 10.586, p = 0.005) post-ETV. Major complications occurred in seven patients (12.1%), including intraoperative venous bleeding in three, arterial bleeding in one, and occlusion of the stoma in three patients. The overall mortality rate was 10.3% (six patients). One of these patients died of pulmonary infection and another of ventriculitis. Four additional patients died of progression of malignant tumor during the follow-up period. Conclusions. The results indicate that ETV is a most effective treatment in cases of obstructive hydrocephalus that is caused by aqueductal stenosis and space-occupying lesions. For patients with infections or intraventricular bleeding, ETV has considerable effects in selected cases with confirmed CSF dynamic studies. Early clinical and cine phase—contrast MR imaging findings after the operation play an important role in predicting patient outcomes after ETV. The predictive value of an alteration in ventricle size, especially during the early stage following ETV, is unsatisfactory. Seventy-five percent of ETV failures occur within 6 months after surgery. A repeated ventriculostomy should be considered to be a sufficient treatment option in cases in which stoma dysfunction is suspected.

2021 ◽  
Vol 56 (2) ◽  
pp. 105-109
Author(s):  
Sarita Chowdhary ◽  
Shyamendra Pratap Sharma ◽  
Pranaya Panigrahi ◽  
Manoj Kumar Yadav ◽  
Shiv Prasad Sharma

<b><i>Background:</i></b> Endoscopic third ventriculostomy (ETV) is currently considered as an alternative to cerebrospinal fluid (CSF) shunt systems in the treatment of obstructive hydrocephalus. This procedure allows the CSF to drain in the basal cisterns and reabsorbed by arachnoid granulations, and avoiding implantation of exogenous material. <b><i>Aims and Objectives:</i></b> The purpose of this study was to assess the success rate of ETV in infants less than 1 year of age with congenital noncommunicating hydrocephalus. <b><i>Material and Methods:</i></b> This study was a 2-year prospective study from August 2017 to July 2019. ETVs were performed in 14 patients younger than 1 year with diagnosis of noncommunicating hydrocephalous. A failure was defined as the need for shunt implantation after ETV. Phase-contrast MRI of the brain was done after 6 months to see patency of ETV fenestration and CSF flow through ventriculostomy. <b><i>Results:</i></b> ETV was tried in 18 patients and successfully performed in 14 patients. Out of the 14 patients, shunt implantation after ETV was performed in 3 patients (failed ETV). In the successful cases, etiology was idiopathic aqueductal stenosis in 8, shunt complications in 2, and 1 case was a follow-up case of occipital encephalocele; the mean age was 7.7 months (range 3–12). In the 3 failed cases, etiology was aqueductal stenosis, mean age was 7.6 months (range 3–11). In all ETVs, failed patients MPVP shunting was done. Follow-up of nonshunted patients was done from 6 to 24 months (mean 15 months). There was no mortality or permanent morbidity noted following ETV. <b><i>Conclusion:</i></b> ETV is a good surgical procedure for less than 1-year-old children.


1999 ◽  
Vol 90 (3) ◽  
pp. 448-454 ◽  
Author(s):  
Giuseppe Cinalli ◽  
Christian Sainte-Rose ◽  
Paul Chumas ◽  
Michel Zerah ◽  
Francis Brunelle ◽  
...  

Object. The goal of this study was to analyze the types of failure and long-term efficacy of third ventriculostomy in children.Methods. The authors retrospectively analyzed clinical data obtained in 213 children affected by obstructive triventricular hydrocephalus who were treated by third ventriculostomy between 1973 and 1997. There were 120 boys and 93 girls. The causes of the hydrocephalus included: aqueductal stenosis in 126 cases; toxoplasmosis in 23 cases, pineal, mesencephalic, or tectal tumor in 42 cases; and other causes in 22 cases. In 94 cases, the procedure was performed using ventriculographic guidance (Group I) and in 119 cases by using endoscopic guidance (Group II). In 19 cases (12 in Group I and seven in Group II) failure was related to the surgical technique. Three deaths related to the technique were observed in Group I. For the remaining patients, Kaplan—Meier survival analysis showed a functioning third ventriculostomy rate of 72% at 6 years with a mean follow-up period of 45.5 months (range 4 days–17 years). No significant differences were found during long-term follow up between the two groups. In Group I, a significantly higher failure rate was seen in children younger than 6 months of age, but this difference was not observed in Group II. Thirty-eight patients required reoperation (21 in Group I and 17 in Group II) because of persistent or recurrent intracranial hypertension. In 29 patients shunt placement was necessary. In nine patients in whom there was radiologically confirmed obstruction of the stoma, the third ventriculostomy was repeated; this was successful in seven cases. Cine phase-contrast (PC) magnetic resonance (MR) imaging studies were performed in 15 patients in Group I at least 10 years after they had undergone third ventriculostomy (range 10–17 years, median 14.3 years); this confirmed long-term patency of the stoma in all cases.Conclusions. Third ventriculostomy effectively controls obstructive triventricular hydrocephalus in more than 70% of children and should be preferred to placement of extracranial cerebrospinal shunts in this group of patients. When performed using ventriculographic guidance, the technique has a higher mortality rate and a higher failure rate in children younger than 6 months of age and is, therefore, no longer preferred. When third ventriculostomy is performed using endoscopic guidance, the same long-term results are achieved in children younger than 6 months of age as in older children and, thus, patient age should no longer be considered as a contraindication to using the technique. Delayed failures are usually secondary to obstruction of the stoma and often can be managed by repeating the procedure. Midline sagittal T2-weighted MR imaging sequences combined with cine PC MR imaging flow measurements provide a reliable tool for diagnosis of aqueductal stenosis and for ascertaining the patency of the stoma during follow-up evaluation.


2003 ◽  
Vol 98 (5) ◽  
pp. 1032-1039 ◽  
Author(s):  
Jürgen Boschert ◽  
Dieter Hellwig ◽  
Joachim K. Krauss

Object. Endoscopic third ventriculostomy (ETV) is the treatment of choice for occlusive (noncommunicating) hydrocephalus. Nevertheless, its routine use in patients who have previously undergone shunt placement is still not generally accepted. The authors' aim was to investigate the long-term effects of ETV in a group of prospectively chosen patients. Methods. Patients who underwent ETV and had previously undergone shunt placement for occlusive hydrocephalus were followed prospectively for at least 3 years (range 36–103 months, mean 63.6 months). Nine female and eight male patients ranging from 8 to 54 years of age (mean 32 years) had undergone shunt placement 0.7 to 23.5 years (mean 8.1 years) before ETV. Fifteen patients were admitted with underdrainage and two with overdrainage. In six cases, ETV was performed as an emergency operation. The origin of hydrocephalus was aqueductal stenosis in 12 cases and aqueductal compression by a tumor in two cases. Three patients suffered from a fourth ventricle outlet syndrome, and in two patients an additional malresorptive component was suspected. Thirteen patients underwent ETV with shunt removal and insertion of an external drain in one session. The drain served as a safety measure; it could be opened if raised intracranial pressure or ventricular dilation was observed on postoperative imaging studies. In the other four patients the shunt was initially ligated and then removed during a second operation. Fourteen patients (82%) have remained shunt free. The other three patients, including the two with an additional malresorptive component, needed shunt reimplantation 3 days, 2 weeks, or 7 months after ETV. Conclusions. Use of ETV is safe and effective for the treatment for shunt dysfunction in patients with obstructive hydrocephalus.


1999 ◽  
Vol 90 (1) ◽  
pp. 153-155 ◽  
Author(s):  
Henry W. S. Schroeder ◽  
Rolf W. Warzok ◽  
Jamal A. Assaf ◽  
Michael R. Gaab

✓ In recent years, endoscopic third ventriculostomy has become a well-established procedure for the treatment of various forms of noncommunicating hydrocephalus. Endoscopic third ventriculostomy is considered to be an easy and safe procedure. Complications have rarely been reported in the literature. The authors present a case in which the patient suffered a fatal subarachnoid hemorrhage (SAH) after endoscopic third ventriculostomy.This 63-year-old man presented with confusion and drowsiness and was admitted in to the hospital in poor general condition. Computerized tomography scanning revealed an obstructive hydrocephalus caused by a tumor located in the cerebellopontine angle. An endoscopic third ventriculostomy was performed with the aid of a Fogarty balloon catheter. Some hours postoperatively, the patient became comatose. Computerized tomography scanning revealed a severe perimesencephalic—peripontine SAH and progressive hydrocephalus. Despite emergency external ventricular drainage, the patient died a few hours later.Although endoscopic third ventriculostomy is considered to be a simple and safe procedure, one should be aware that severe and sometimes fatal complications may occur. To avoid vascular injury, perforation of the floor of the third ventricle should be performed in the midline, halfway between the infundibular recess and the mammillary bodies, just behind the dorsum sellae.


2002 ◽  
Vol 97 (3) ◽  
pp. 519-524 ◽  
Author(s):  
Vitaly Siomin ◽  
Giuseppe Cinalli ◽  
Andre Grotenhuis ◽  
Aprajay Golash ◽  
Shizuo Oi ◽  
...  

Object. In this study the authors evaluate the safety, efficacy, and indications for endoscopic third ventriculostomy (ETV) in patients with a history of subarachnoid hemorrhage or intraventricular hemorrhage (IVH) and/or cerebrospinal fluid (CSF) infection. Methods. The charts of 101 patients from seven international medical centers were retrospectively reviewed; 46 patients had a history of hemorrhage, 42 had a history of CSF infection, and 13 had a history of both disorders. All patients experienced third ventricular hydrocephalus before endoscopy. The success rate for treatment in these three groups was 60.9, 64.3, and 23.1%, respectively. The follow-up period in successfully treated patients ranged from 0.6 to 10 years. Relatively minor complications were observed in 15 patients (14.9%), and there were no deaths. A higher rate of treatment failure was associated with three factors: classification in the combined infection/hemorrhage group, premature birth in the posthemorrhage group, and younger age in the postinfection group. A higher success rate was associated with a history of ventriculoperitoneal (VP) shunt placement before ETV in the posthemorrhage group, even among those who had been born prematurely, who were otherwise more prone to treatment failure. The 13 premature infants who had suffered an IVH and who had undergone VP shunt placement before ETV had a 100% success rate. The procedure was also successful in nine of 10 patients with primary aqueductal stenosis. Conclusions. Patients with obstructive hydrocephalus and a history of either hemorrhage or infection may be good candidates for ETV, with safety and success rates comparable with those in more general series of patients. Patients who have sustained both hemorrhage and infection are poor candidates for ETV, except in selected cases and as a treatment of last resort. In patients who have previously undergone shunt placement posthemorrhage, ETV is highly successful. It is also highly successful in patients with primary aqueductal stenosis, even in those with a history of hemorrhage or CSF infection.


2009 ◽  
Vol 111 (6) ◽  
pp. 1119-1126 ◽  
Author(s):  
Joachim M. K. Oertel ◽  
Yvonne Mondorf ◽  
Joerg Baldauf ◽  
Henry W. S. Schroeder ◽  
Michael R. Gaab

Object Endoscopic third ventriculostomy (ETV) is well accepted for obstructive hydrocephalus of various etiologies. Nevertheless, it is seldom considered in intracranial hemorrhage even in cases involving obstruction of the CSF circulation. Methods Between May 1993 and April 2008, 34 endoscopic procedures were performed for hemorrhage-related obstructive hydrocephalus with an intraventricular component. All patients were prospectively followed up. Special attention was paid to presurgical clinical status, type of hemorrhage, type of surgery, postsurgical clinical status, postsurgical ventricular size, and necessity of ventriculoperitoneal shunt implantation. Results An ETV was performed for treatment of obstructive hydrocephalus due to intracranial hemorrhage in 34 patients (15 male, 19 female; mean age 60.8 years [range 3 months–83 years]). Hydrocephalus was caused by 17 cerebellar, 6 thalamic, 5 intraventricular, 3 basal ganglia, 2 subarachnoid, and 1 pontine hemorrhage. Thirty-three patients (97.1%) presented with impaired consciousness. Intraventricular blood was present in all cases. In 16 cases (47.1%), blood clots had to be evacuated to achieve access to the third ventricle floor. The mean operation time was 58.2 minutes (range 25–120 minutes). Three complications occurred (rate of 8.8%) with 2 being asymptomatic (5.9%) and 1 being transient (2.9%). There was no procedure-related permanent morbidity, and no procedure-related mortality. After surgery, there was clinical improvement in 17 cases (50.0%) and radiological evidence of improvement in 22 cases (64.7%). Two patients required postoperative ventriculoperitoneal shunting (5.9%). Seven patients died of hemorrhage while in the hospital (20.6%), and another 4 died during follow-up (11.8%). Fifteen patients (44.1%) showed a persistent clinical improvement at the final follow-up (mean 12.2 months after surgery). Conclusions Endoscopic third ventriculostomy represents a safe treatment option in intraventricular hemorrhage–related obstructive hydrocephalus yielding similar results as an external drainage but with less risk of infection and a very low subsequent shunt placement rate. In cases with a predominant obstructive component, ETV should be considered in hydrocephalus due to intracerebral hemorrhage. However, performing an ETV with a blurred field of vision and distorted ventricular anatomy is a challenge for any endoscopic neurosurgeon and should be reserved for experienced neuroendoscopists.


2020 ◽  
pp. 1-4
Author(s):  
Valentina Orlando ◽  
Pietro Spennato ◽  
Maria De Liso ◽  
Vincenzo Trischitta ◽  
Alessia Imperato ◽  
...  

<b><i>Introduction:</i></b> Hydrocephalus is not usually part of Down syndrome (DS). Fourth ventricle outlet obstruction is a rare cause of obstructive hydrocephalus, difficult to diagnose, because tetraventricular dilatation may suggest a communicant/nonobstructive hydrocephalus. <b><i>Case Presentation:</i></b> We describe the case of a 6-year-old boy with obstructive tetraventricular hydrocephalus, caused by Luschka and Magen­die foramina obstruction and diverticular enlargement of Luschka foramina (the so-called fourth ventricle outlet obstruction) associated with DS. He was treated with endoscopic third ventriculostomy (ETV) without complications, and a follow-up MRI revealed reduction of the ventricles, disappearance of the diverticula, and patency of the ventriculostomy. <b><i>Conclusion:</i></b> Diverticular enlargement of Luschka foramina is an important radiological finding for obstructive tetraventricular hydrocephalus. ETV is a viable option in tetraventricular obstructive hydrocephalus in DS.


2000 ◽  
Vol 92 (6) ◽  
pp. 915-919 ◽  
Author(s):  
Abhaya V. Kulkarni ◽  
James M. Drake ◽  
Derek C. Armstrong ◽  
Peter B. Dirks

Object. The goal of this study was to determine and compare imaging correlates in pediatric patients who underwent successful or failed endoscopic third ventriculostomies (ETVs). To this end, the authors measured ventricular size changes and the presence of cerebrospinal fluid (CSF) flow void in both groups of children following ETV.Methods. Images obtained in children with hydrocephalus immediately before and at least 30 days after having undergone ETV were reviewed by four independent observers (two blinded and two nonblinded). Each observer independently measured the frontal and occipital horn ratio ([FOR], a reliable and valid measure of ventricular size) and provided a subjective assessment of the presence of a flow void at the ETV site, the degree of periventricular edema, and the amount of CSF over the cerebral hemispheres.There were 29 children whose mean age was 6.6 years at the time of ETV and who had a mean postoperative follow-up period lasting 1.6 years. Postoperatively, the mean reduction in ventricular size (as measured using the FOR) was 7% (95% confidence interval [CI] 3–11%) in cases that were deemed failures (eight patients) and 16% (95% CI 12–20%) in clinically successful cases (21 patients). This reduction was significantly greater in cases of clinical success compared with those that were deemed failures (p = 0.03, t-test). There were no substantial differences between blinded and nonblinded assessments. Flow void was present in 94% of successes and absent in 75% of failures (p = 0.01, Fisher's exact test). The other subjective assessments were not significantly different between the groups of successes and failures.Conclusions. Ventricular size appears to be somewhat reduced in both groups of patients who underwent clinically successful and failed ETV; however, the reduction is significantly greater among clinically successful cases. The presence of a flow void also appears to correlate with clinical success and its absence with clinical failure.


2021 ◽  
pp. 65-67
Author(s):  
Ramesh Tanger ◽  
Dinesh Kumar Barolia ◽  
Arka Chatterjee ◽  
Punit Singh Parihar ◽  
Arun Gupta

CONTEXT: VP Shunt is most commonly used procedure for hydrocephalus but shunt failure is also the common complication in many patients. Endoscopic third ventriculostomy (ETV) is an accepted procedure for the treatment of obstructive hydrocephalus. The aim of our study is to evaluate the success rate AIM AND OBJECTIVE - of ETV in patients of obstructive hydrocephalus formerly treated by ventriculo-peritoneal (VP shunt) shunt. The failure VP shunt was removed before ETV. MATERIALS AND METHOD: This study was conducted between June 2015 and December 2019 in single unit of our department. Twenty one (n=21) patients were enrolled for this study. All patients were admitted with failure of VP shunt. They were known case of non-communicating hydrocephalus previously operated for VP shunt. Six patients were excluded for ETV because CT/MRI show grossly distorted anatomy of ventricles. Endoscopic third ventriculostomy was attempted in 15 patients, but ventriculostomy was done successfully in 10 patients, rests were treated with revision of VP shunt. All patients in this study were radiologically diagnosed RESULTS: case of hydrocephalus due to aqueduct stenosis. They were experienced VP shunt insertion but there were failure of shunt due to any reason. ETV procedures were done successfully in 10 patients. Out of 10 patients one patient needed shunt insertion due ineffective ETV. Shunt revision was done in 11 patients. There was no serious complication during and after ETV procedures. The follow-up period of patients with successful ETV was 6–60 months. This follow-up was uneventful and peaceful for their parents. ETV can be considered as an alternative treatment for the patients w CONCLUSION: ith VP shunt failure with an acceptable success rate of 80%, although long-term follow-up is needed for these patients.


1991 ◽  
Vol 75 (6) ◽  
pp. 865-873 ◽  
Author(s):  
Patrick J. Kelly

✓ Sixteen consecutive patients with obstructive hydrocephalus due to nontumoral aqueductal stenosis of adolescent or adult onset underwent computerized tomography-guided stereotactic third ventriculostomy. Computer-assisted angiographic target-point cross-registration was used in surgical planning to reduce morbidity. The procedure was used as primary treatment in five previously unshunted patients and in 11 patients who had previously received shunts and who presented when their shunts became obstructed (five patients), became infected (five patients), or required multiple revisions (one patient). At the time of third ventriculostomy, shunt hardware was removed in patients with infected shunts and the distal element of the shunt was ligated in all patients with obstructed shunts except one, who later required repeat third ventriculostomy; the distal shunt was ligated at that time. Follow-up data (range 1 to 5 years, mean 3½ years, after surgery) showed that only one of the 16 patients had undergone a shunting procedure after the third ventriculostomy. The other 15 patients are asymptomatic and shunt-independent. In previously shunt-dependent patients, the peripheral subarachnoid space and cerebrospinal fluid absorption mechanism remained patent in spite of shunts placed earlier. Therefore, in patients with obstructive hydrocephalus due to aqueductal stenosis of adolescent or adult onset, stereotactic third ventriculostomy should be seriously considered as primary surgical management in previously unshunted patients and in shunt-dependent patients with obstructed or infected shunts.


Sign in / Sign up

Export Citation Format

Share Document