Atorvastatin reduction of intracranial hematoma volume in rats subjected to controlled cortical impact

2004 ◽  
Vol 101 (5) ◽  
pp. 822-825 ◽  
Author(s):  
Dunyue Lu ◽  
Asim Mahmood ◽  
Changsheng Qu ◽  
Anton Goussev ◽  
Mei Lu ◽  
...  

Object. Atorvastatin, a β-hydroxy-β-methylglutaryl coenzyme A reductase inhibitor, has pleiotropic effects such as improving thrombogenic profile, promoting angiogenesis, and reducing inflammatory responses and has shown promise in enhancing neurological functional improvement and promoting neuroplasticity in animal models of traumatic brain injury (TBI), stroke, and intracranial hemorrhage. The authors tested the effect of atorvastatin on intracranial hematoma after TBI. Methods. Male Wistar rats were subjected to controlled cortical impact, and atorvastatin (1 mg/kg) was orally administered 1 day after TBI and daily for 7 days thereafter. Rats were killed at 1, 8, and 15 days post-TBI. The temporal profile of intraparenchymal hematoma was measured on brain tissue sections by using a MicroComputer Imaging Device and light microscopy. Conclusions. Data in this study showed that intraparenchymal and intraventricular hemorrhages are present 1 day after TBI and are absorbed at 15 days after TBI. Furthermore, atorvastatin reduces the volume of intracranial hematoma 8 days after TBI.

1998 ◽  
Vol 88 (3) ◽  
pp. 549-556 ◽  
Author(s):  
Michael L. Forbes ◽  
Robert S. B. Clark ◽  
C. Edward Dixon ◽  
Steven H. Graham ◽  
Donald W. Marion ◽  
...  

Minimizing secondary injury after severe traumatic brain injury (TBI) is the primary goal of cerebral resuscitation. For more than two decades, hyperventilation has been one of the most often used strategies in the management of TBI. Laboratory and clinical studies, however, have verified a post-TBI state of reduced cerebral perfusion that may increase the brain's vulnerability to secondary injury. In addition, it has been suggested in a clinical study that hyperventilation may worsen outcome after TBI. Object. Using the controlled cortical impact model in rats, the authors tested the hypothesis that aggressive hyperventilation applied immediately after TBI would worsen functional outcome, expand the contusion, and promote neuronal death in selectively vulnerable hippocampal neurons. Methods. Twenty-six intubated, mechanically ventilated, isoflurane-anesthetized male Sprague—Dawley rats were subjected to controlled cortical impact (4 m/second, 2.5-mm depth of deformation) and randomized after 10 minutes to either hyperventilation (PaCO2 = 20.3 ± 0.7 mm Hg) or normal ventilation groups (PaCO2 = 34.9 ± 0.3 mm Hg) containing 13 rats apiece and were treated for 5 hours. Beam balance and Morris water maze (MWM) performance latencies were measured in eight rats from each group on Days 1 to 5 and 7 to 11, respectively, after controlled cortical impact. The rats were killed at 14 days postinjury, and serial coronal sections of their brains were studied for contusion volume and hippocampal neuron counting (CA1, CA3) by an observer who was blinded to their treatment group. Mortality rates were similar in both groups (two of 13 in the normal ventilation compared with three of 13 in the hyperventilation group, not significant [NS]). There were no differences between the groups in mean arterial blood pressure, brain temperature, and serum glucose concentration. There were no differences between groups in performance latencies for both beam balance and MWM or contusion volume (27.8 ± 5.1 mm3 compared with 27.8 ± 3.3 mm3, NS) in the normal ventilation compared with the hyperventilation groups, respectively. In brain sections cut from the center of the contusion, hippocampal neuronal survival in the CA1 region was similar in both groups; however, hyperventilation reduced the number of surviving hippocampal CA3 neurons (29.7 cells/hpf, range 24.2–31.7 in the normal ventilation group compared with 19.9 cells/hpf, range 17–23.7 in the hyperventilation group [25th–75th percentiles]; *p < 0.05, Mann—Whitney rank-sum test). Conclusions. Aggressive hyperventilation early after TBI augments CA3 hippocampal neuronal death; however, it did not impair functional outcome or expand the contusion. These data indicate that CA3 hippocampal neurons are selectively vulnerable to the effects of hyperventilation after TBI. Further studies delineating the mechanisms underlying these effects are needed, because the injudicious application of hyperventilation early after TBI may contribute to secondary neuronal injury.


2000 ◽  
Vol 93 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flavio Ghizoni ◽  
Adalberto Michels

Object. This study was conducted to evaluate the effects of dorsal rhizotomy on upper-limb spasticity, functional improvement, coordination, and hand sensibility.Methods. Fifteen spastic upper limbs in 13 patients were selected and prospectively studied. Brachial plexus dorsal rhizotomy was performed in which two, three, or four dorsal roots were completely sectioned. Patients were followed up for at least 12 months after surgery; the mean follow-up period was 15.6 months and the maximum period was 30 months. A remarkable relief of spasticity was observed in all cases. Recurrence was observed in only one patient and was caused by insufficient dorsal root section. Functional improvement was observed in all cases, and functional improvement in the hand was found to be related to the presence of active finger extension in the preoperative period. Even when extended dorsal root section was performed, no hand anesthesia, either total or partial, was observed. No patient lost movement ability in the postoperative period, and no ataxic limbs were observed.Conclusions. Brachial plexus dorsal rhizotomy is very effective as a treatment for upper-limb spasticity and results in functional improvement without loss of sensation in the hand.


1990 ◽  
Vol 72 (4) ◽  
pp. 523-532 ◽  
Author(s):  
Paul C. McCormick ◽  
Roland Torres ◽  
Kalmon D. Post ◽  
Bennett M. Stein

✓ A consecutive series of 23 patients underwent operative removal of an intramedullary spinal cord ependymoma between January, 1976, and September, 1988. Thirteen women and 10 men between the age of 19 and 70 years experienced symptoms for a mean of 34 months preceding initial diagnosis. Eight patients had undergone treatment prior to tumor recurrence and referral. Mild neurological deficits were present in 22 patients on initial examination. The location of the tumors was predominantly cervical or cervicothoracic. Radiological evaluation revealed a wide spinal cord in all cases. Magnetic resonance (MR) imaging was the single most important radiological procedure. At operation, a complete removal was achieved in all patients. No patient received postoperative radiation therapy. Histological examination revealed a benign ependymoma in all cases. The follow-up period ranged from 6 to 159 months (mean 62 months) with seven patients followed for a minimum of 10 years after surgery. Fourteen patients underwent postoperative MR imaging at intervals ranging from 8 months to 10 years postoperatively. No patient has been lost to follow-up review and there were no deaths. No patient showed definite clinical or radiological evidence of tumor recurrence during the follow-up period. Recent neurological evaluation revealed functional improvement from initial preoperative clinical status in eight patients, no significant change in 12 patients, and deterioration in three patients. The data support the belief that long-term disease-free control of intramedullary spinal ependymomas with acceptable morbidity may be achieved utilizing microsurgical removal alone.


2002 ◽  
Vol 97 (2) ◽  
pp. 461-466 ◽  
Author(s):  
Dipankar Nandi ◽  
Simon Parkin ◽  
Richard Scott ◽  
Jonathan L. Winter ◽  
Carole Joint ◽  
...  

✓ The authors report the neurological, neurophysiological, and neuropsychological effects of using long-term bilateral pallidal high-frequency deep brain stimulation (DBS) in a case of disabling camptocormia. Deep brain stimulation electrodes were implanted stereotactically to target the globus pallidus internus (GPi) bilaterally. Local field potentials (FPs) were recorded using the DBS electrodes and concurrent abdominal flexor electromyography (EMG) potentials during camptocormic episodes. Videotaped assessments of the movement disorder and neuropsychological evaluations of the patient before implantation and 6 months after initiation of pallidal stimulation were recorded. There was significant functional improvement following long-term pallidal stimulation, and some improvement was noted in neuropsychological scores. A temporal correlation between the GPi FPs and EMG-recorded rectus abdominis potentials was evident. There were no treatment-related adverse effects. The authors have found that long-term pallidal stimulation was safe and offered functional benefit to a patient with this severely disabling condition. The physiological studies may help further the understanding of the pathophysiology of this rare entity.


1980 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Saeid Alemohammad ◽  
William F. Bouzarth

✓ Persistent headaches after lumbar puncture or myelography can be due to intracranial hematoma. This possibility should be evaluated by computerized tomography, keeping in mind the difficulty in the diagnosis of the isodense subdural hematoma.


2000 ◽  
Vol 92 (3) ◽  
pp. 435-441 ◽  
Author(s):  
Tomikatsu Toyoda ◽  
Neal F. Kassell ◽  
Kevin S. Lee

Object. Inflammatory responses and oxygen free radicals have increasingly been implicated in the development of ischemic brain injury. In some cases, an attenuation of inflammation or free-radical injury can provide tissue protection. Diphosphoryl lipid A (DPL) is a detoxified derivative of a lipopolysaccharide (endotoxin) of Salmonella minnesota strain R595, which is capable of stimulating the immune system without eliciting direct toxic effects. In this study the authors examined the influence of preconditioning with DPL on ischemia/reperfusion injury in rats.Methods. Sprague—Dawley rats were injected intravenously with either DPL or vehicle. Twenty-four hours later, some animals were tested for superoxide dismutase (SOD) activity. Others were subjected to a 3-hour period of focal cerebral ischemia and, after a reperfusion period of 24 hours, were killed. Infarction volume, SOD activity, and myeloperoxidase (MPO) activity were assayed in the postischemic animals.Pretreatment with DPL produced significant reductions in cerebral infarction and MPO activity in the ischemic penumbra. A significant enhancement of basal SOD activity was observed 24 hours after DPL treatment (that is, before ischemia), and a further enhancement of SOD activity was seen in the ischemic penumbra 24 hours after reperfusion.Conclusions. These data provide the first evidence of a neuroprotective effect of preconditioning with DPL in an in vivo model of cerebral ischemia. Although the precise mechanisms through which DPL exerts its neuroprotective influence remain to be established, an inhibition of the complex inflammatory response to ischemia and an enhancement of endogenous antioxidant activity are leading candidates.


1985 ◽  
Vol 63 (1) ◽  
pp. 120-124 ◽  
Author(s):  
Andras A. Kemeny ◽  
Jan A. Jakubowski ◽  
Emil Pasztor ◽  
Anthony A. Jefferson ◽  
Richard Wojcikiewicz

✓ The possibility that bromocriptine has a selective effect on blood flow in the adenohypophysis was examined in rats. Twenty-four anesthetized male Wistar rats underwent measurement of blood flow using the hydrogen clearance method. Intravenous injection of 50 µg/kg bromocriptine reduced the blood flow in both the medial and lateral parts of the adenohypophysis to about 70% of the baseline value. Simultaneously measured cerebral cortical and white matter flows were unchanged. Similar results were obtained following administration of a higher dose (500 µg/kg) of bromocriptine. This phenomenon cannot be attributed to the decrease in blood pressure. The course of change in blood flow in the medial and lateral adenohypophysis did not follow that of the mean arterial blood pressure, and the alteration of blood pressure remained within the limits of autoregulation in the adenohypophysis. The results indicate that bromocriptine is capable of reducing blood flow selectively in the pituitary region. This mechanism may contribute to the clinical usefulness of this drug.


2000 ◽  
Vol 93 (3) ◽  
pp. 455-462 ◽  
Author(s):  
Ann-Christine Duhaime ◽  
Susan S. Margulies ◽  
Susan R. Durham ◽  
Maureen M. O'Rourke ◽  
Jeffrey A. Golden ◽  
...  

Object. The goal of this study was to investigate the relationship between maturational stage and the brain's response to mechanical trauma in a gyrencephalic model of focal brain injury. Age-dependent differences in injury response might explain certain unique clinical syndromes seen in infants and young children and would determine whether specific therapies might be particularly effective or even counterproductive at different ages.Methods. To deliver proportionally identical injury inputs to animals of different ages, the authors have developed a piglet model of focal contusion injury by using specific volumes of rapid cortical displacement that are precisely scaled to changes in size and dimensions of the growing brain. Using this model, the histological response to a scaled focal cortical impact was compared at 7 days after injury in piglets that were 5 days, 1 month, and 4 months of age at the time of trauma. Despite comparable injury inputs and stable physiological parameters, the percentage of hemisphere injured differed significantly among ages, with the youngest animals sustaining the smallest lesions (0.8%, 8.4%, and 21.5%, for 5-day-, 1-month-, and 4-month-old animals, respectively, p = 0.0018).Conclusions. These results demonstrate that, for this particular focal injury type and severity, vulnerability to mechanical trauma increases progressively during maturation. Because of its developmental and morphological similarity to the human brain, the piglet brain provides distinct advantages in modeling age-specific responses to mechanical trauma. Differences in pathways leading to cell death or repair may be relevant to designing therapies appropriate for patients of different ages.


2004 ◽  
Vol 1 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Zoher Ghogawala ◽  
Edward C. Benzel ◽  
Sepideh Amin-Hanjani ◽  
Fred G. Barker ◽  
J. Fred Harrington ◽  
...  

Object. There is considerable debate among spine surgeons regarding whether fusion should be used to augment decompressive surgery in patients with symptomatic lumbar spinal stenosis involving Grade I degenerative spondylolisthesis. The authors prospectively evaluated the outcomes of patients treated between 2000 and 2002 at two institutions to determine whether fusion improves functional outcome 1 year after surgery. Methods. Patients ranged in age from 50 to 81 years. They presented with degenerative Grade I (3- to 14-mm) spondylolisthesis and lumbar stenosis without gross instability (< 3 mm of motion at the level of subluxation). Those in whom previous surgery had been performed at the level of subluxation were excluded. Each patient completed Oswestry Disability Index (ODI) and Short Form—36 (SF-36) questionnaires preoperatively and at 6 to 12 months postoperatively. Some patients underwent decompression alone (20 cases), whereas others underwent decompression and posterolateral instrumentation-assisted fusion (14 cases), at the treating surgeon's discretion. Baseline demographic data, radiographic features, and ODI and SF-36 scores were similar in both groups. The 1-year fusion rate was 93%. Both forms of surgery independently improved outcome compared with baseline status, based on ODI and SF-36 physical component summary (PCS) results (p < 0.001). Decompression combined with fusion led to an improvement in ODI scores of 27.5 points, whereas decompression alone was associated with a 13.6-point increase (p = 0.02). Analysis of the SF-36 PCS data also demonstrated a significant intergroup difference (p = 0.003). Conclusions. Surgery substantially improved 1-year outcomes based on established outcomes instruments in patients with Grade I spondylolisthesis and stenosis. Fusion was associated with greater functional improvement.


2004 ◽  
Vol 1 (3) ◽  
pp. 322-329 ◽  
Author(s):  
Ajay Bakshi ◽  
Omar Fisher ◽  
Taner Dagci ◽  
B. Timothy Himes ◽  
Itzhak Fischer ◽  
...  

Object. Spinal cord injury (SCI) is a complex pathological entity, the treatment of which requires a multipronged approach. One way to integrate different therapeutic strategies for SCI is to develop implantable scaffolds that can deliver therapies in a synergistic manner. Many investigators have developed implantable “bridges,” but an important property of such scaffolds—that is, mechanical compatibility with host tissues—has been neglected. In this study, the authors evaluated the results of implanting a mechanically matched hydrogel-based scaffold to treat SCI. Methods. A nonbiodegradable hydrogel, poly(2-hydroxyethylmethacrylate) (PHEMA), was engineered using thermally initiated free radical solution polymerization. Two groups of 12 adult Sprague—Dawley rats underwent partial cervical hemisection injury followed by implantation of either PHEMA or PHEMA soaked in 1 µg of brain-derived neurotrophic factor (BDNF). Four rats from each group were killed 1, 2, or 4 weeks after induction of the injury. Immunofluorescence staining was performed to determine the presence of scarring, cellular inflammatory responses, gliosis, angiogenesis, and axonal growth in and around the implanted scaffolds. Conclusions. The implanted PHEMA with 85% water content had a compressive modulus of 3 to 4 kPa, which matched the spinal cord. Implanted PHEMA elicited modest cellular inflammatory responses that disappeared by 4 weeks and minimal scarring was noted around the matrix. Considerable angiogenesis was observed in PHEMA, and PHEMA soaked in BDNF promoted axonal penetration into the gel. The authors conclude that mechanically engineered PHEMA is well accepted by host tissues and might be used as a platform for sustained drug delivery to promote axonal growth and functional recovery after SCI.


Sign in / Sign up

Export Citation Format

Share Document