Combined cimetidine and temozolomide, compared with temozolomide alone: significant increases in survival in nude mice bearing U373 human glioblastoma multiforme orthotopic xenografts

2005 ◽  
Vol 102 (4) ◽  
pp. 706-714 ◽  
Author(s):  
Florence Lefranc ◽  
Syril James ◽  
Isabelle Camby ◽  
Jean-François Gaussin ◽  
Francis Darro ◽  
...  

Object. Malignant gliomas consist of both heterogeneous proliferating and migrating cell subpopulations, with migrating glioma cells exhibiting less sensitivity to antiproliferative or proapoptotic drugs than proliferative cells. Therefore, the authors combined cimetidine, an antiinflammatory agent already proven to act against migrating epithelial cancer cells, with temozolomide to determine whether the combination induces antitumor activities in experimental orthotopic human gliomas compared with the effects of temozolomide alone. Methods. Cimetidine added to temozolomide compared with temozolomide alone induced survival benefits in nude mice with U373 human glioblastoma multiforme (GBM) cells orthotopically xenografted in the brain. Computer-assisted phase-contrast microscopy analyses of 9L rat and U373 human GBM cells showed that cimetidine significantly decreased the migration levels of these tumor cells in vitro at concentrations at which tumor growth levels were not modified (as revealed on monotetrazolium colorimetric assay). Computer-assisted microscope analyses of neoglycoconjugate-based glycohistochemical staining profiles of 9L gliosarcomas grown in vivo revealed that cimetidine significantly decreased expression levels of endogenous receptors for fucose and, to a lesser extent, for N-acetyl-lactosamine moieties. Endogenous receptors of this specificity are known to play important roles in adhesion and migration processes of brain tumor cells. Conclusions. Cimetidine, acting as an antiadhesive and therefore an antimigratory agent for glioma cells, could be added in complement to the cytotoxic temozolomide compound to combat both migrating and proliferating cells in GBM.

1994 ◽  
Vol 81 (6) ◽  
pp. 902-909 ◽  
Author(s):  
Pieter Wesseling ◽  
Jeroen A. W. M. van der Laak ◽  
Henk de Leeuw ◽  
Dirk J. Ruiter ◽  
Peter C. Burger

✓ Because histologically prominent microvascular proliferation is frequently present in glioblastoma multiforme, it has been hypothesized that this neoplasm is particularly dependent on neovascularization for its continued growth and that antiangiogenic therapy might be especially useful. To quantify the histological aspects of microvascular proliferation in glioma, a feasible and reproducible method was developed for computer-assisted image analysis of the visualized microvasculature in glial tissue. This method was used to compare several vascular parameters in histological whole-tumor sections of untreated human glioblastoma multiforme with those in histologically normal cerebral cortex and white matter. There was a significant increase in mean number, area, and perimeter of blood vessels per microscopic field in glioblastoma multiforme compared to normal cerebral white matter. In a substantial number of tumor fields, however, the vascular density was in the same range as that of normal cerebral white matter. The striking heterogeneity of the microvasculature within glioblastoma multiforme was illustrated by the significantly higher standard deviation for the vascular parameters in tumor tissue. The results of this study suggest that many regions of glioblastomas multiforme are not overtly angiogenesis dependent and may be difficult to treat by antiangiogenic therapy alone.


Author(s):  
Robert M. Cardinale ◽  
Larry E. Dillehay ◽  
Jeffery A. Williams ◽  
Kevin Tabassi ◽  
Henry Brem ◽  
...  

2002 ◽  
Vol 97 (5) ◽  
pp. 1184-1190 ◽  
Author(s):  
Ryuya Yamanaka ◽  
Naoki Yajima ◽  
Naoto Tsuchiya ◽  
Junpei Honma ◽  
Ryuichi Tanaka ◽  
...  

Object. Immunogene therapy for malignant gliomas was further investigated in this study to improve its therapeutic efficacy. Methods. Dendritic cells (DCs) were isolated from bone marrow and pulsed with phosphate-buffered saline or Semliki Forest virus (SFV)—mediated 203 glioma complementary (c)DNA with or without systemic administration of interleukin (IL)-12 and IL-18 to treat mice bearing the 203 glioma. To study the immune mechanisms involved in tumor regression, the authors investigated tumor growth of an implanted 203 glioma model in T cell subset—depleted mice and in interferon (IFN) γ—neutralized mice. To examine the protective immunity produced by tumor inoculation, a repeated challenge of 203 glioma cells was given by injecting the cells into the left thighs of surviving mice and the growth of these cells was monitored. The authors demonstrated that the combined administration of SFV-cDNA, IL-12, and IL-18 produced significant antitumor effects against the growth of murine glioma cells in vivo and also can induce specific antitumor immunity. The synergic effects of the combination of SFV-cDNA, IL-12, and IL-18 in vivo were also observed to coincide with markedly augmented IFNγ production. The antitumor effects of this combined therapy are mediated by CD4+ and CD8+ T cells and by NK cells. These results indicate that the use of IL-18 and IL-12 in DC-based immunotherapy for malignant glioma is beneficial. Conclusions. Immunogene therapy combined with DC therapy, IL-12, and IL-18 may be an excellent candidate in the development of a new treatment protocol. The self-replicating SFV system may therefore provide a novel approach for the treatment of malignant gliomas.


2000 ◽  
Vol 92 (5) ◽  
pp. 804-811 ◽  
Author(s):  
Griffith R. Harsh ◽  
Thomas S. Deisboeck ◽  
David N. Louis ◽  
John Hilton ◽  
Michael Colvin ◽  
...  

Object. The gene therapy paradigm of intratumoral activation of ganciclovir (GCV) following transduction of tumor cells by retroviral vectors bearing the thymidine kinase (tk) gene has produced dramatic remissions of malignant gliomas in animal models. In human trials, although the technique has been deemed safe, little antitumor effect has been demonstrated. To evaluate the basis of this inefficacy in human gliomas, the authors conducted a gene-marking trial involving neuropathological and biochemical studies of treated tumor specimens.Methods. Five patients with malignant recurrent gliomas underwent stereotactic biopsy sampling and intratumoral implantation procedures with three aliquots of 106 vector-producing cells (VPCs) in columns. After 5 days, the tumor was resected and the tumor bed reimplanted with VPCs, and a course of GCV was given. Patients received clinical and radiological follow up for 6 months. Tumor specimens were analyzed neuropathologically and for tk gene expression by anti-TK immunohistochemistry and TK enzymatic activity.Four patients tolerated the treatment well but experienced tumor progression. The other developed an abscess after the second operation and died. Increased TK enzymatic activity was demonstrated in the one tumor specimen analyzed. Immunohistochemical evidence of tk gene expression was limited to VPCs. Transduction of tumor cells was not seen. Viable tumor cells were seen near VPCs containing TK. The lymphocytic immune response was mild.Conclusions. Except for the risk of infection inherent in reoperation, this tk—GCV paradigm was both feasible and safe. Pathological studies indicated that limited dissemination of VPCs and vector from the infusion site and failure to transduce tumor cells with the tk gene are major barriers to efficacy.


Author(s):  
Alphonse Taghian ◽  
Wilfried Budach ◽  
Wlodek Ruka ◽  
Jill Freeman ◽  
Danielle Gioioso ◽  
...  

1977 ◽  
Vol 155 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. W. Rana ◽  
H. Pinkerton ◽  
H. Thornton ◽  
D. Nagy

1986 ◽  
Vol 64 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Raymond Sawaya ◽  
Thaddeus Mandybur ◽  
Illona Ormsby ◽  
John M. Tew

✓ This study was designed to evaluate the effect of an inhibitor of plasminogen activation on the growth of a human glioblastoma line grown in nude mice up to the seventh passage. The tumors produced plasminogen activators and showed histological characteristics similar to those of the original tumor. Three groups of mice were studied. Group A received 5% epsilon aminocaproic acid (EACA); Group B received 2.5% EACA; and Group C served as a control. There was no statistical difference among the three groups with regard to: 1) age at time of tumor transplantation; 2) the interval between implant and treatment; or 3) tumor volume at time of treatment. Blood measurements of EACA, performed in a limited number of animals, have shown that the drug at 5% concentration had reached toxic levels. Statistically significant differences between the three groups were noted in the following categories: 1) rate of tumor growth; 2) tumor volume at time of death, where Group A had smaller tumors than Group C; and 3) mean survival times of Groups A and B as compared to Group C. A statistically significant negative correlation was found between the rate of tumor growth and the length of survival of animals in Group C, while no correlation could be found for either Group A or B, indicating that the antifibrinolytic therapy modified this important biological variable. This study supports the hypothesis that the fibrinolytic system plays a role in the growth and development of malignant gliomas and that interference with the fibrinolytic system may retard the growth of these tumors grown in nude mice.


2005 ◽  
Vol 103 (6) ◽  
pp. 1058-1066 ◽  
Author(s):  
Weijun Wang ◽  
Nian-Ling Zhu ◽  
Jason Chua ◽  
Steve Swenson ◽  
Fritz K. Costa ◽  
...  

Object. Adenovirus vector (AdV)—mediated gene delivery has been recently demonstrated in clinical trials as a novel potential treatment for malignant gliomas. Combined coxsackievirus B and adenovirus receptor (CAR) has been shown to function as an attachment receptor for multiple adenovirus serotypes, whereas the vitronectin integrins (αvβ3 and αvβ5) are involved in AdV internalization. In resected glioma specimens, the authors demonstrated that malignant gliomas have varying levels of CAR, αvβ3, and αvβ5 expression. Methods. A correlation between CAR expression and the transduction efficiency of AdV carrying the green fluorescent protein in various human glioblastoma multiforme (GBM) cell lines and GBM primary cell lines was observed. To increase transgene activity in in vitro glioma cells with low or deficient levels of CAR, the authors used basic fibroblast growth factor (FGF2) as a targeting ligand to redirect adenoviral infection through its cognate receptor, FGF receptor 1 (FGFR1), which was expressed at high levels by all glioma cells. These findings were confirmed by in vivo study data demonstrating enhanced transduction efficiency of FGF2-retargeted AdV in CAR-negative intracranial gliomas compared with AdV alone, without evidence of increased angiogenesis. Conclusions. Altogether, the results demonstrated that AdV-mediated gene transfer using the FGF2/FGFR system is effective in gliomas with low or deficient levels of CAR and suggested that FGF2-retargeting of AdV may be a promising approach in glioma gene therapy.


Sign in / Sign up

Export Citation Format

Share Document