Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging

2005 ◽  
Vol 103 (6) ◽  
pp. 949-955 ◽  
Author(s):  
Simone Hemm ◽  
Gérard Mennessier ◽  
Nathalie Vayssiere ◽  
Laura Cif ◽  
Hassan El Fertit ◽  
...  

Object. Adjusting electrical parameters used in deep brain stimulation (DBS) for dystonia remains time consuming and is currently based on clinical observation alone. The goal of this study was to visualize electrical parameters around the electrode, to correlate these parameters with the anatomy of the globus pallidus internus (GPI), and to study the relationship between the volume of stimulated tissue and the electrical parameter settings. Methods. The authors developed a computer-assisted methodological model for visualizing electrical parameters (the isopotential and the isoelectric field magnitude), with reference to the stereotactic target, for different stimulation settings (monopolar and bipolar) applied during DBS. Electrical field values were correlated with the anatomy of the GPI, which was determined by performing stereotactic magnetic resonance imaging in one reference patient. By using this method it is possible to compare potential and electrical field distributions for different stimulation modes. In monopolar and bipolar stimulation, the shape and distribution of the potential and electrical field are different and depend on the stimulation voltage. Distributions visualized for patient-specific parameters can be subsequently correlated with anatomical information. The application of this method to one patient demonstrated that the 0.2-V/mm isofield line fits best with the lateral GPI borders at the level of the stimulated contacts. Conclusions. The electrical field is a crucial parameter because it is assumed to be responsible for triggering action potentials. Electrical field visualization allows the calculation of the stimulated volume for a given isoline. Its application to an entire series of patients may help determine a threshold for obtaining a therapeutic effect, which is currently unknown, and consequently may aid in optimizing parameter settings in individual patients.

2003 ◽  
Vol 99 (4) ◽  
pp. 772-774 ◽  
Author(s):  
Jörg Spiegel ◽  
Gerhard Fuss ◽  
Martin Backens ◽  
Wolfgang Reith ◽  
Tim Magnus ◽  
...  

✓ Data from previous studies have shown that magnetic resonance (MR) imaging of the head can be performed safely in patients with deep brain stimulators. The authors report on a 73-year-old patient with bilaterally implanted deep brain electrodes for the treatment of Parkinson disease, who exhibited dystonic and partially ballistic movements of the left leg immediately after an MR imaging session. Such dystonic or ballistic movements had not been previously observed in this patient. In the following months, this focal movement disorder resolved completely. This case demonstrates the possible risks of MR imaging in patients with deep brain stimulators.


2002 ◽  
Vol 96 (4) ◽  
pp. 673-679 ◽  
Author(s):  
Nathalie Vayssiere ◽  
Simone Hemm ◽  
Laura Cif ◽  
Marie Christine Picot ◽  
Nina Diakonova ◽  
...  

Object. To assess the validity of relying on atlases during stereotactic neurosurgery, the authors compared target coordinates in the globus pallidus internus (GPi) obtained using magnetic resonance (MR) imaging with those determined using an atlas. The targets were used in deep brain stimulation (DBS) for the treatment of generalized dystonia. Methods. Thirty-five patients, who were treated using bilateral DBS of the GPi, were included in this study. The target was selected on three-dimensional MR images by direct visual recognition of the GPi. The coordinates were automatically recorded using dedicated software. They were translated into the anterior commissure—posterior commissure (AC—PC) coordinate system by using a matrix transformation process. The same GPi target was defined, based on the locations of brain structures shown in the atlases of Schaltenbrand and Talairach. Magnetic resonance imaging—based GPi target coordinates were statistically compared with the corresponding atlas-based coordinates by applying the Student t-test. A significant difference (p < 0.001) was demonstrated in x, y, and z directions between MR imaging—based and Schaltenbrand atlas—derived target coordinates. The comparison with normalized Talairach atlas coordinates demonstrated a significant difference (p < 0.01) in the y and z directions, although not in the x direction (p = 0.12). No significant correlation existed between MR imaging—based target coordinates and patient age (p > 0.1). No significant correlation was observed between MR imaging—based target coordinates and patient sex in the y and z directions (p > 0.9), although it was significant in the x direction (p < 0.05). A significant variation in coordinates and the length of the AC—PC line was revealed only in the y direction (p < 0.005). Conclusions. A significant difference was found between target coordinates obtained by direct visual targeting on MR images (validated by postoperative clinical results) and those obtained by indirect targeting based on atlases.


Neurosurgery ◽  
2013 ◽  
Vol 73 (1) ◽  
pp. E184-E188 ◽  
Author(s):  
Thien Thien Lim ◽  
Hubert H. Fernandez ◽  
Scott Cooper ◽  
Kathryn Mary K. Wilson ◽  
Andre G. Machado

Abstract BACKGROUND AND IMPORTANCE: Chorea acanthocytosis is a progressive hereditary neurodegenerative disorder characterized by hyperkinetic movements, seizures, and acanthocytosis in the absence of any lipid abnormality. Medical treatment is typically limited and disappointing. CLINICAL PRESENTATION: We report on a 32-year-old patient with chorea acanthocytosis with a failed attempt at awake deep brain stimulation (DBS) surgery due to intraoperative seizures and postoperative intracranial hematoma. He then underwent a second DBS operation, but under general anesthesia and with intraoperative magnetic resonance imaging guidance. Marked improvement in his dystonia, chorea, and overall quality of life was noted 2 and 8 months postoperatively. CONCLUSION: DBS surgery of the bilateral globus pallidus pars interna may be useful in controlling the hyperkinetic movements in neuroacanthocytosis. Because of the high propensity for seizures in this disorder, DBS performed under general anesthesia, with intraoperative magnetic resonance imaging guidance, may allow successful implantation while maintaining accurate target localization.


2009 ◽  
Vol 64 (suppl_5) ◽  
pp. ons374-ons384 ◽  
Author(s):  
Slawomir Daniluk ◽  
Keith G. Davies ◽  
Peter Novak ◽  
Thai Vu ◽  
Jules M. Nazzaro ◽  
...  

Abstract OBJECTIVE Although a few studies have quantified errors in the implantation of deep brain stimulation electrodes into the subthalamic nucleus (STN), a significant trend in error direction has not been reported. We have previously found that an error in axial plane, which is of most concern because it cannot be compensated for during deep brain stimulation programming, had a posteromedial trend. We hypothesized that this trend results from a predominance of a directionally oriented error factor of brain origin. Accordingly, elimination of nonbrain (technical) error factors could augment this trend. Thus, implantation accuracy could be improved by anterolateral compensation during target planning. METHODS Surgical technique was revised to minimize technical error factors. During 22 implantations, targets were selected on axial magnetic resonance imaging scans up to 1.5 mm anterolateral from the STN center. Using fusion of postoperative computed tomographic and preoperative magnetic resonance imaging scans, implantation errors in the axial plane were obtained and compared with distances from the lead to the STN to evaluate the benefit of anterolateral compensation. RESULTS Twenty errors and the mean error had a posteromedial direction. The average distances from the lead to the target and to the STN were 1.7 mm (range, 0.8–3.1 mm) and 1.1 mm (range, 0.1–1.9 mm), respectively. The difference between the 2 distances was significant (paired t test, P &lt; 0.0001). The lower parts of the lead were consistently bent in the posteromedial direction on postoperative scout computed tomographic scans, suggesting that a brain-related factor is responsible for the reported error. CONCLUSION Elimination of the technical factors of error during STN deep brain stimulation implantation can result in a consistent posteromedial error. Implantation accuracy may be improved by compensation for this error in advance.


Sign in / Sign up

Export Citation Format

Share Document