Initial stability of cervical spine fixation: predictive value of a finite element model

2002 ◽  
Vol 97 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Tobias R. Pitzen ◽  
Dieter Matthis ◽  
Dragos D. Barbier ◽  
Wolf-Ingo Steudel

✓ The purpose of this study was to generate a validated finite element (FE) model of the human cervical spine to be used to analyze new implants. Digitized data obtained from computerized tomography scanning of a human cervical spine were used to generate a three-dimensional, anisotropic, linear C5–6 FE model by using a software package (ANSYS 5.4). Based on the intact model (FE/Intact), a second was generated by simulating an anterior cervical fusion and plate (ACFP) C5–6 model in which monocortical screws (FE/ACFP) were used. Loading of each FE model was simulated using pure moments of ± 2.5 Nm in flexion/extension, axial left/right rotation, and left/right lateral bending. For validation of the models, their predicted C5–6 range of motion (ROM) was compared with the results of an earlier, corresponding in vitro study of six human spines, which were tested in the intact state and surgically altered at C5–6 with the same implants. The validated model was used to analyze the stabilizing effect of a new disc spacer, Cenius (Aesculap AG, Tuttlingen, Germany), as a stand-alone implant (FE/Cenius) and in combination with an anterior plate (FE/Cenius+ACFP). In addition, compression loads at the upper surface of the spacer were investigated using both models. As calculated by FE/Intact and FE/ACFP models, the ROM was within 1 standard deviation of the mean value of the corresponding in vitro measurements for each loading case. The FE/Cenius model predicted C5–6 ROM values of 5.5° in flexion/extension, 3.1° in axial rotation (left and right), and 2.9° in lateral bending (left and right). Addition of an anterior plate resulted in a further decrease of ROM in each loading case. The FE/Cenius model predicted an increase of compression load in flexion and a decrease in extension, whereas in the FE/Cenius+ACFP model an increase of graft compression in extension and unloading of the graft in flexion were predicted. The current FE model predicted ROM values comparable with those obtained in vitro in the intact state as well as after simulation of an ACFP model. It predicted a stabilizing potential for a new cage, alone and in combination with an anterior plate system, and predicted the influence of both loading modality and additional instrumentation on the behavior of the interbody graft.

2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


1993 ◽  
Vol 79 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Vincent C. Traynelis ◽  
Paul A. Donaher ◽  
Robert M. Roach ◽  
H. Kojimoto ◽  
Vijay K. Goel

✓ Traumatic cervical spine injuries have been successfully stabilized with plates applied to the anterior vertebral bodies. Previous biomechanical studies suggest, however, that these devices may not provide adequate stability if the posterior ligaments are disrupted. To study this problem, the authors simulated a C-5 teardrop fracture with posterior ligamentous instability in human cadaveric spines. This model was used to compare the immediate biomechanical stability of anterior cervical plating, from C-4 to C-6, to that provided by a posterior wiring construct over the same levels. Stability was tested in six modes of motion: flexion, extension, right and left lateral bending, and right and left axial rotation. The injured/plate-stabilized spines were more stable than the intact specimens in all modes of testing. The injured/posterior-wired specimens were more stable than the intact spines in axial rotation and flexion. They were not as stable as the intact specimens in the lateral bending or extension testing modes. The data were normalized with respect to the motion of the uninjured spine and compared using repeated measures of analysis of variance, the results of which indicate that anterior plating provides significantly more stability in extension and lateral bending than does posterior wiring. The plate was more stable than the posterior construct in flexion loading; however, the difference was not statistically significant. The two constructs provide similar stability in axial rotation. This study provides biomechanical support for the continued use of bicortical anterior plate fixation in the setting of traumatic cervical spine instability.


2009 ◽  
Vol 11 (5) ◽  
pp. 538-546 ◽  
Author(s):  
Cédric Barrey ◽  
Thomas Mosnier ◽  
Jérôme Jund ◽  
Gilles Perrin ◽  
Wafa Skalli

Object Few biomechanical in vitro studies have reported the effects of disc replacement on motion and kinematics of the cervical spine. The purpose of this study was to analyze motion through 3D load-displacement curves before and after implantation of a ball-and-socket cervical disc prosthesis with cranial geometric center; special focus was placed on coupled motion, which is a well-known aspect of normal cervical spine kinematics. Methods Six human cervical spines were studied. There were 3 male and 3 female cadaveric specimens (mean age at death 68.5 ± 5 years [range 54–74 years]). The specimens were evaluated sequentially in 2 different conditions: first they were tested intact; then the spinal specimens were tested after implantation of a ball-and-socket cervical disc prosthesis, the Discocerv, at the C5–6 level. Pure moment loading was applied in flexion/extension, left and right axial rotation, and left and right lateral bending. All tests were performed under load control with a 3D measurement system. Results No differences were found to be statistically significant after comparison of range of motion between intact and instrumented spines for all loading conditions. The mean range of motion for intact spines was 10.3° in flexion/extension, 5.6° in lateral bending, and 5.4° in axial rotation; that for instrumented spines was 10.4, 5.2, and 4.8°, respectively. No statistical difference was observed for the neutral zone nor stiffness between intact and instrumented spines. Finally, the coupled motions were also preserved during axial rotation and lateral bending, with no significant difference before and after implantation. Conclusions This study demonstrated that, under specific testing conditions, a ball-and-socket joint with cranial geometrical center can restore motion in the 3 planes after discectomy in the cervical spine while maintaining physiological coupled motions during axial rotation and lateral bending.


2000 ◽  
Vol 92 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Rupert Dietl ◽  
Matthias Krammer ◽  
Christianto Lumenta ◽  
...  

Object. The function of interbody fusion cages is to stabilize spinal segments primarily by distracting them as well as by allowing bone ingrowth and fusion. An important condition for efficient formation of bone tissue is achieving adequate spinal stability. However, the initial stability may be reduced due to repeated movements of the spine during everyday activity. Therefore, in addition to immediate stability, stability after cyclic loading is of remarkable relevance; however, this has not yet been investigated. The object of this study was to investigate the immediate stabilizing effect of three different posterior lumbar interbody fusion cages and to clarify the effect of cyclic loading on the stabilization. Methods. Before and directly after implantation of a Zientek, Stryker, or Ray posterior lumbar interbody fusion cage, 24 lumbar spine segment specimens were each evaluated in a spine tester. Pure lateral bending, flexion—extension, and axial rotation moments (± 7.5 Nm) were applied continuously. The motion in each specimen was measured simultaneously. The specimens were then loaded cyclically (40,000 cycles, 5 Hz) with an axial compression force ranging from 200 to 1000 N. Finally, they were tested once again in the spine tester. Conclusions. In general, a decrease of movement in all loading directions was noted after insertion of the Zientek and Ray cages and an increase of movement after implantation of a Stryker cage. In all three cage groups greater stability was demonstrated in lateral bending and flexion than in extension and axial rotation. Reduced stability during cyclic loading was observed in all three cage groups; however, loss of stability was most pronounced when the Ray cage was used.


2004 ◽  
Vol 100 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Sung-Min Kim ◽  
T. Jesse Lim ◽  
Josemaria Paterno ◽  
Tae-Jin Hwang ◽  
Kun-Woo Lee ◽  
...  

Object. The authors compared the biomechanical stability of two anterior fixation procedures—anterior C1–2 Harms plate/screw (AHPS) fixation and the anterior C1–2 transarticular screw (ATS) fixation; and two posterior fixation procedures—the posterior C-1 lateral mass combined with C-2 pedicle screw/rod (PLM/APSR) fixation and the posterior C1–2 transarticular screw (PTS) fixation after destabilization. Methods. Sixteen human cervical spine specimens (Oc—C3) were tested in three-dimensional flexion—extension, axial rotation, and lateral bending motions after destabilization by using an atlantoaxial C1–2 instability model. In each loading mode, moments were applied to a maximum of 1.5 Nm, and the range of motion (ROM), neutral zone (NZ), and elastic zone (EZ) were determined and values compared using the intact spine, the destabilized spine, and the postfixation spine. The AHPS method produced inferior biomechanical results in flexion—extension and lateral bending modes compared with the intact spine. The lateral bending NZ and ROM for this method differed significantly from the other three fixation techniques (p < 0.05), although statistically significant differences were not obtained for all other values of ROM and NZ for the other three procedures. The remaining three methods restored biomechanical stability and improved it over that of the intact spine. Conclusions. The PLM/APSR fixation method was found to have the highest biomechanical stiffness followed by PTS, ATS, and AHPS fixation. The PLM/APSR fixation and AATS methods can be considered good procedures for stabilizing the atlantoaxial joints, although specific fixation methods are determined by the proper clinical and radiological characteristics in each patient.


1999 ◽  
Vol 90 (2) ◽  
pp. 186-190 ◽  
Author(s):  
Dan Christensson ◽  
Hans Säveland ◽  
Stefan Zygmunt ◽  
Kjell Jonsson ◽  
Urban Rydholm

Object. The authors performed a prospective study to determine whether cervical laminectomy without simultaneous fusion results in spinal instability. Methods. Because of clinical and radiographic signs of cord compression, 15 patients with rheumatoid arthritis (including one with Bechterew's disease) and severe involvement of the cervical spine underwent decompressive laminectomy without fusion performed on one or more levels. Preoperative flexion—extension radiographs demonstrated dislocation but no signs of instability at the level of cord compression. Clinical and radiological reexamination were performed twice at a median of 15 months (6–24 months) and 43 months (28–72 months) postoperatively. One patient developed severe vertical translocation 28 months after undergoing a C-1 laminectomy, which led to sudden tetraplegia. She required reoperation in which posterior fusion was performed. No signs of additional instability at the operated levels were found in the remaining 14 patients. In three patients increased but stable dislocation was demonstrated. The results of clinical examination were favorable in most patients, with improvement of neurological symptoms and less pain. Conclusions. The authors conclude that decompressive laminectomy in which the facet joints are preserved can be performed in the rheumatoid arthritis-affected cervical spine in selected patients in whom signs of cord compression are demonstrated, but in whom radiographic and preoperative signs of instability are not. Performing a simultaneous fusion procedure does not always appear necessary. Vertical translocation must be detected early, and if present, a C-1 laminectomy should be followed by occipitocervical fusion.


1999 ◽  
Vol 90 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
Robert F. Spetzler ◽  
Volker K. H. Sonntag ◽  
...  

Object. The authors sought to determine the biomechanics of the occipitoatlantal (occiput [Oc]—C1) and atlantoaxial (C1–2) motion segments after unilateral gradient condylectomy. Methods. Six human cadaveric specimens (skull with attached upper cervical spine) underwent nondestructive biomechanical testing (physiological loads) during flexion—extension, lateral bending, and axial rotation. Axial translation from tension to compression was also studied across Oc—C2. Each specimen served as its own control and underwent baseline testing in the intact state. The specimens were then tested after progressive unilateral condylectomy (25% resection until completion), which was performed using frameless stereotactic guidance. At Oc—C1 for all motions that were tested, mobility increased significantly compared to baseline after a 50% condylectomy. Flexion—extension, lateral bending, and axial rotation increased 15.3%, 40.8%, and 28.1%, respectively. At C1–2, hypermobility during flexion—extension occurred after a 25% condylectomy, during axial rotation after 75% condylectomy, and during lateral bending after a 100% condylectomy. Conclusions. Resection of 50% or more of the occipital condyle produces statistically significant hypermobility at Oc—C1. After a 75% resection, the biomechanics of the Oc—C1 and C1–2 motion segments change considerably. Performing fusion of the craniovertebral junction should therefore be considered if half or more of one occipital condyle is resected.


2021 ◽  
pp. 1-13
Author(s):  
Waseem Ur Rahman ◽  
Wei Jiang ◽  
Guohua Wang ◽  
Zhijun Li

BACKGROUND: The finite element method (FEM) is an efficient and powerful tool for studying human spine biomechanics. OBJECTIVE: In this study, a detailed asymmetric three-dimensional (3D) finite element (FE) model of the upper cervical spine was developed from the computed tomography (CT) scan data to analyze the effect of ligaments and facet joints on the stability of the upper cervical spine. METHODS: A 3D FE model was validated against data obtained from previously published works, which were performed in vitro and FE analysis of vertebrae under three types of loads, i.e. flexion/extension, axial rotation, and lateral bending. RESULTS: The results show that the range of motion of segment C1–C2 is more flexible than that of segment C2–C3. Moreover, the results from the FE model were used to compute stresses on the ligaments and facet joints of the upper cervical spine during physiological moments. CONCLUSION: The anterior longitudinal ligaments (ALL) and interspinous ligaments (ISL) are found to be the most active ligaments, and the maximum stress distribution is appear on the vertebra C3 superior facet surface under both extension and flexion moments.


2000 ◽  
Vol 93 (1) ◽  
pp. 109-116
Author(s):  
Albert V. B. Brasil ◽  
Danilo G. Coelho ◽  
Tarcísio Eloy P. B. Filho ◽  
Fernando M. Braga

Object. The authors conducted a biomechanical study in which they compared the uses of the Rogers interspinous and the Lovely-Carl tension band wiring techniques for internal fixation of the cervical spine. Method. An extensive biomechanical evaluation (stiffness in positive and negative rotations around the x, y, and z axes; range of motion in flexion—extension, bilateral axial rotation, and bilateral bending; and neutral zone in flexion—extension, bilateral axial rotation, and lateral bending to the right and to the left) was performed in two groups of intact calf cervical spines. After these initial tests, all specimens were subjected to a distractive flexion Stage 3 ligamentous lesion. Group 1 specimens then underwent surgical fixation by the Rogers technique, and Group 2 specimens underwent surgery by using the Lovely—Carl technique. After fixation, specimens were again submitted to the same biomechanical evaluation. The percentage increase or decrease between the pre- and postoperative parameters was calculated. These values were considered quantitative indicators of the efficacy of the techniques, and the efficacy of the two techniques was compared. Conclusions. Analysis of the findings demonstrated that in the spines treated with the Lovely—Carl technique less restriction of movement was produced without affecting stiffness, compared with those treated with the Rogers technique, thus making the Lovely—Carl technique clinically less useful.


Author(s):  
Nicole A. DeVries ◽  
Anup A. Gandhi ◽  
Douglas C. Fredericks ◽  
Joseph D. Smucker ◽  
Nicole M. Grosland

Due to the limited availability of human cadaveric specimens, animal models are often utilized for in vitro studies of various spinal disorders and surgical techniques. Sheep spines have similar geometry, disc space, and lordosis as compared to humans [1,2]. Several studies have identified the geometrical similarities between the sheep and human spine; however these studies have been limited to quantifying the anatomic dimensions as opposed to the biomechanical responses [2–3]. Although anatomical similarities are important, biomechanical correspondence is imperative to understand the effects of disorders, surgical techniques, and implant designs. Some studies [3–5] have focused on experimental biomechanics of the sheep cervical functional spinal units (FSUs). Szotek and colleagues [1] studied the biomechanics of compression and impure flexion-extension for the C2-C7 intact sheep spine. However, to date, there is no comparison of the sheep spine using pure flexion-extension, lateral bending, or axial rotation moments for multilevel specimen. Therefore, the purpose of this study was to conduct in vitro testing of the intact C2-C7 sheep cervical spine.


Sign in / Sign up

Export Citation Format

Share Document