Biomechanical comparison of anterior and posterior stabilization methods in atlantoaxial instability

2004 ◽  
Vol 100 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Sung-Min Kim ◽  
T. Jesse Lim ◽  
Josemaria Paterno ◽  
Tae-Jin Hwang ◽  
Kun-Woo Lee ◽  
...  

Object. The authors compared the biomechanical stability of two anterior fixation procedures—anterior C1–2 Harms plate/screw (AHPS) fixation and the anterior C1–2 transarticular screw (ATS) fixation; and two posterior fixation procedures—the posterior C-1 lateral mass combined with C-2 pedicle screw/rod (PLM/APSR) fixation and the posterior C1–2 transarticular screw (PTS) fixation after destabilization. Methods. Sixteen human cervical spine specimens (Oc—C3) were tested in three-dimensional flexion—extension, axial rotation, and lateral bending motions after destabilization by using an atlantoaxial C1–2 instability model. In each loading mode, moments were applied to a maximum of 1.5 Nm, and the range of motion (ROM), neutral zone (NZ), and elastic zone (EZ) were determined and values compared using the intact spine, the destabilized spine, and the postfixation spine. The AHPS method produced inferior biomechanical results in flexion—extension and lateral bending modes compared with the intact spine. The lateral bending NZ and ROM for this method differed significantly from the other three fixation techniques (p < 0.05), although statistically significant differences were not obtained for all other values of ROM and NZ for the other three procedures. The remaining three methods restored biomechanical stability and improved it over that of the intact spine. Conclusions. The PLM/APSR fixation method was found to have the highest biomechanical stiffness followed by PTS, ATS, and AHPS fixation. The PLM/APSR fixation and AATS methods can be considered good procedures for stabilizing the atlantoaxial joints, although specific fixation methods are determined by the proper clinical and radiological characteristics in each patient.

2000 ◽  
Vol 92 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Rupert Dietl ◽  
Matthias Krammer ◽  
Christianto Lumenta ◽  
...  

Object. The function of interbody fusion cages is to stabilize spinal segments primarily by distracting them as well as by allowing bone ingrowth and fusion. An important condition for efficient formation of bone tissue is achieving adequate spinal stability. However, the initial stability may be reduced due to repeated movements of the spine during everyday activity. Therefore, in addition to immediate stability, stability after cyclic loading is of remarkable relevance; however, this has not yet been investigated. The object of this study was to investigate the immediate stabilizing effect of three different posterior lumbar interbody fusion cages and to clarify the effect of cyclic loading on the stabilization. Methods. Before and directly after implantation of a Zientek, Stryker, or Ray posterior lumbar interbody fusion cage, 24 lumbar spine segment specimens were each evaluated in a spine tester. Pure lateral bending, flexion—extension, and axial rotation moments (± 7.5 Nm) were applied continuously. The motion in each specimen was measured simultaneously. The specimens were then loaded cyclically (40,000 cycles, 5 Hz) with an axial compression force ranging from 200 to 1000 N. Finally, they were tested once again in the spine tester. Conclusions. In general, a decrease of movement in all loading directions was noted after insertion of the Zientek and Ray cages and an increase of movement after implantation of a Stryker cage. In all three cage groups greater stability was demonstrated in lateral bending and flexion than in extension and axial rotation. Reduced stability during cyclic loading was observed in all three cage groups; however, loss of stability was most pronounced when the Ray cage was used.


2000 ◽  
Vol 92 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Douglas L. Brockmeyer ◽  
Julie E. York ◽  
Ronald I. Apfelbaum

Object. Craniovertebral instability is a challenging problem in pediatric spinal surgery. Recently, C1–2 transarticular screw fixation has been used to assist in craniovertebral joint stabilization in pediatric patients. Currently there are no available data that define the anatomical suitability of this technique in the pediatric population. The authors report their experience in treating 31 pediatric patients with craniovertebral instability by using C1–2 transarticular screws. Methods. From March 1992 to October 1998, 31 patients who were 16 years of age or younger with atlantooccipital or atlantoaxial instability, or both, were evaluated at our institution. There were 21 boys and 10 girls. Their ages ranged from 4 to 16 years (mean age 10.2 years). The most common causes of instability were os odontoideum (12 patients) and ligamentous laxity (eight patients). Six patients had undergone a total of nine previous attempts at posterior fusion while at outside institutions. All patients underwent extensive preoperative radiological evaluation including fine-slice (1-mm) computerized tomography scanning with multiplanar reconstruction to evaluate the anatomy of the C1–2 joint space. Preoperatively, of the 62 possible C1–2 joint spaces in 31 patients, 55 sides (89%) were considered suitable for transarticular screw placement. In three patients the anatomy was considered unsuitable for bilateral screw placement. In three patients the anatomy was considered inadequate on one side. Fifty-five C1–2 transarticular screws were subsequently placed, and there were no neurological or vascular complications. Conclusions. The authors conclude that C1–2 transarticular screw fixation is technically possible in a large proportion of pediatric patients with craniovertebral instability.


1999 ◽  
Vol 90 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
Robert F. Spetzler ◽  
Volker K. H. Sonntag ◽  
...  

Object. The authors sought to determine the biomechanics of the occipitoatlantal (occiput [Oc]—C1) and atlantoaxial (C1–2) motion segments after unilateral gradient condylectomy. Methods. Six human cadaveric specimens (skull with attached upper cervical spine) underwent nondestructive biomechanical testing (physiological loads) during flexion—extension, lateral bending, and axial rotation. Axial translation from tension to compression was also studied across Oc—C2. Each specimen served as its own control and underwent baseline testing in the intact state. The specimens were then tested after progressive unilateral condylectomy (25% resection until completion), which was performed using frameless stereotactic guidance. At Oc—C1 for all motions that were tested, mobility increased significantly compared to baseline after a 50% condylectomy. Flexion—extension, lateral bending, and axial rotation increased 15.3%, 40.8%, and 28.1%, respectively. At C1–2, hypermobility during flexion—extension occurred after a 25% condylectomy, during axial rotation after 75% condylectomy, and during lateral bending after a 100% condylectomy. Conclusions. Resection of 50% or more of the occipital condyle produces statistically significant hypermobility at Oc—C1. After a 75% resection, the biomechanics of the Oc—C1 and C1–2 motion segments change considerably. Performing fusion of the craniovertebral junction should therefore be considered if half or more of one occipital condyle is resected.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


2000 ◽  
Vol 92 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Victor M. Haughton ◽  
Timothy A. Schmidt ◽  
Kevin Keele ◽  
Howard S. An ◽  
Tae-Hong Lim

Object. The authors conducted a study in which their objective was to measure the effect of tears in the annulus fibrosus on the motions of lumbar spinal motion segments. Methods. Lumbar spinal motion segments were harvested from human cadavers and studied using a 1.5-tesla magnetic resonance imager. The motion segments were subjected to incremental flexion, extension, rotation, and lateral bending torques. Displacements and rotations were measured using a kinematic system. The segments were sectioned on a cryomicrotome to verify the presence of tears in the annulus fibrosus. Conclusions. Tears in the annulus fibrosus increase the amount of motion that results from a torque applied to the motion segment. Radial and transverse tears of the annulus fibrosus have a greater effect on motions produced by an axial rotatory torque than on those produced by flexion, extension, or lateral bending torques. The difference between normal discs and discs with annular tears is more marked during moments of axial rotational than during those of flexion, extension, or lateral bending.


2001 ◽  
Vol 95 (2) ◽  
pp. 208-214 ◽  
Author(s):  
Hans-Joachim Wilke ◽  
Sinead Kavanagh ◽  
Sylvia Neller ◽  
Christian Haid ◽  
Lutz Eberhart Claes

Object. Current procedures for treatment of degenerative disc disease may not restore flexibility or disc height to the intervertebral disc. Recently, a prosthetic device, intended to replace the degenerated nucleus pulposus, was developed. In this biomechanical in vitro test the authors study the effect of implanting a prosthetic nucleus in cadaveric lumbar intervertebral discs postnucleotomy and determine if the flexibility and disc height of the L4–5 motion segment is restored. Methods. The prosthetic disc nucleus device consists of two hydrogel pellets, each enclosed in a woven polyethylene jacket. Six human cadaveric lumbar motion segments (obtained in individuals who, at the time of death, were a mean age of 56.7 years) were loaded with moments of ± 7.5 Nm in flexion—extension, lateral bending, and axial rotation. The following states were investigated: intact, postnucleotomy, and after device implantation. Range of motion (ROM) and neutral zone (NZ) measurements were determined. Change in disc height from the intact state was measured after nucleotomy and device implantation, with and without a 200-N preload. Conclusions. Compared with the intact state (100%), the nucleotomy increased the ROM in flexion—extension to 118%, lateral bending to 112%, and axial rotation to 121%; once the device was implanted the ROM was reduced to 102%, 88%, and 90%, respectively. The NZ increased the ROM to 210%, lateral bending to 173%, and axial rotation to 107% after nucleotomy, and 146%, 149%, 44%, respectively, after device implantation. A 200-N preload reduced the intact and postnucleotomy disc heights by approximately 1 mm and 2 mm, respectively. The original intact disc height was restored after implantation of the device. The results of the cadaveric L4–5 flexibility testing indicate that the device can potentially restore ROM, NZ, and disc height to the denucleated segment.


1993 ◽  
Vol 79 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Vincent C. Traynelis ◽  
Paul A. Donaher ◽  
Robert M. Roach ◽  
H. Kojimoto ◽  
Vijay K. Goel

✓ Traumatic cervical spine injuries have been successfully stabilized with plates applied to the anterior vertebral bodies. Previous biomechanical studies suggest, however, that these devices may not provide adequate stability if the posterior ligaments are disrupted. To study this problem, the authors simulated a C-5 teardrop fracture with posterior ligamentous instability in human cadaveric spines. This model was used to compare the immediate biomechanical stability of anterior cervical plating, from C-4 to C-6, to that provided by a posterior wiring construct over the same levels. Stability was tested in six modes of motion: flexion, extension, right and left lateral bending, and right and left axial rotation. The injured/plate-stabilized spines were more stable than the intact specimens in all modes of testing. The injured/posterior-wired specimens were more stable than the intact spines in axial rotation and flexion. They were not as stable as the intact specimens in the lateral bending or extension testing modes. The data were normalized with respect to the motion of the uninjured spine and compared using repeated measures of analysis of variance, the results of which indicate that anterior plating provides significantly more stability in extension and lateral bending than does posterior wiring. The plate was more stable than the posterior construct in flexion loading; however, the difference was not statistically significant. The two constructs provide similar stability in axial rotation. This study provides biomechanical support for the continued use of bicortical anterior plate fixation in the setting of traumatic cervical spine instability.


1998 ◽  
Vol 89 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Mohammed Aly Eleraky ◽  
Roberto Masferrer ◽  
Volker K. H. Sonntag

Object. This retrospective review was conducted to determine the efficacy of transarticular screw fixation in a group of patients who were treated for rheumatoid atlantoaxial instability. Methods. Thirty-six patients (mean age 63 years) with rheumatoid atlantoaxial instability were treated with posterior atlantoaxial transarticular screw fixation supplemented with an interspinous C1–2 strut graft—cable construct to provide immediate three-point fixation to facilitate bone fusion. Previous attempts at fusions by using bone grafting with wire fixation at other institutions had failed in six of these patients. Six patients underwent transoral odontoid resections for removal of large irreducible pannus as a first-stage procedure, which was followed within 2 to 3 days by the posterior procedure. Postoperatively, 33 patients were placed in hard cervical collars and three required halo vests because of severe osteoporosis. Of eight patients categorized as Ranawat Class II preoperatively, all eight returned to normal after surgery; of eight patients in Ranawat Class III-A preoperatively, four improved to Class II and four remained unchanged. All 20 patients classified as Ranawat Class I preoperatively recovered completely. Pain decreased or resolved in all patients, and there were no complications related to instrumentation. At follow-up review (mean 2 years), 33 patients (92%) had solid bone fusions, and three (8%) had stable fibrous unions. Conclusions. Posterior atlantoaxial transarticular screw fixation provides a good surgical alternative for the management of patients with rheumatoid atlantoaxial instability. This technique provides immediate three-point rigid fixation of the C1–2 region, thus obviating the need for halo vest immobilization in most cases.


2001 ◽  
Vol 95 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Vijay Goel ◽  
John Drake ◽  
Derek Taggard ◽  
Matthew Brenton ◽  
...  

Object. Polymethylmethacrylate (PMMA) has long been used in the stabilization and reconstruction of traumatic and pathological fractures of the spine. Recently, hydroxyapatite (HA), an osteoconductive, biocompatible cement, has been used as an alternative to PMMA. In this study the authors compare the stabilizing effects of the HA product, BoneSource, with PMMA in an experimental compression fracture of L-1. Methods. Twenty T9—L3 cadaveric spine specimens were mounted individually on a testing frame. Light-emitting diodes were placed on the neural arches as well as the base. Motion was tracked by two video cameras in response to applied loads of 0 to 6 Nm. The weight-drop technique was used to induce a reproducible compression fracture of T-11 after partially coring out the vertebra. Load testing was performed on the intact spine, postfracture, after unilateral transpedicular vertebroplasty with 7 to 10 ml of PMMA or HA, and after flexion—extension fatiguing to 5000 cycles at ± 3 Nm. No significant difference between the HA- and PMMA cemented—fixated spines was demonstrated in flexion, extension, left lateral bending, or right and left axial rotation. The only difference between the two cements was encountered before and after fatiguing in right lateral bending (p ≤ 0.05). Conclusions. The results of this study suggest that the same angular rigidity can be achieved using either HA or PMMA. This is of particular interest because HA is osteoconductive, undergoes remodeling, and is not exothermic.


2003 ◽  
Vol 99 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Paul W. Detwiler ◽  
Christina B. Spetzler ◽  
Sara B. Taylor ◽  
Neil R. Crawford ◽  
Randall W. Porter ◽  
...  

Object. The authors compared differences in biomechanical stability between two decompressive laminectomy techniques for treating lumbar stenosis. A Christmas tree laminectomy (CTL), in which bilateral facetectomies and foraminotomies are performed, was compared with facet-sparing laminectomy (FSL), in which the facets are undercut but not resected. Spinal instability was assessed immediately postoperatively and again after discectomy to model long-term degeneration. Methods. Sixteen motion segments obtained from five human cadaveric lumbar specimens were studied in vitro by conducting nondestructive flexibility tests. Specimens were tested intact, after FSL or CTL, and again after discectomy. Nonconstraining torques (≤ 5 Nm) were applied to induce flexion, extension, axial rotation, and lateral bending; strings and pulleys were used while vertebral angles were measured. Anteroposterior translation in response to shear loading (≤ 100 N) was also measured. Angular motion, shear motion, and sagittal-plane axes of rotation were compared to evaluate stability. Compared with the intact condition, CTL-treated specimens had significantly larger increases in angular motion during flexion, lateral bending, and axial rotation than their FSL-treated counterparts (p < 0.05, nonpaired Student t-tests). Subsequent discectomy caused greater increases in motion in the CTL group. Axes of rotation shifted less from their normal positions after FSL than after CTL. Conclusions. This study provides objective evidence that the treatment of lumbar stenosis with FSL induces less biomechanical instability and alters kinematics less than FSL. These findings support the use of the FSL in treating lumbar stenosis.


Sign in / Sign up

Export Citation Format

Share Document