scholarly journals Model of Reactivity Accident of the RBMK-1000 of the Chornobyl NPP 4th Power Unit

2021 ◽  
Vol 21 (2) ◽  
pp. 39-48
Author(s):  
V. I. Borysenko ◽  
◽  
V. V. Goranchuk ◽  

The article presents the results of modeling of the reactivity accident, which resulted in the destruction of reactor RBMK-1000 of the 4th power unit of the Chornobyl NPP on April 26, 1986. The RBMK-1000 reactivity accident model was developed on the basis of the kinetics of the nuclear reactor, taking into account the change in the reactivity of the reactor. Reactivity changes as a result of both external influence (movement of control rods; change in the reactor inlet coolant temperature (density)) and due to the action of reactivity feedback by the parameters of the reactor core (change in the fuel temperature, coolant temperature, concentration of 135Хе, graphite stack temperature, etc.). A similar approach was applied by the authors of the article for the study of transient processes with the operation of accelerated unit unloading mode on VVER-1000, and the validity of such model is confirmed. The study of the reactivity accident on RBMK-1000 was carried out for various combinations of values of the effectiveness of control rods; reactivity coefficients of the coolant temperature and fuel temperature; changes in the temperature of the coolant at the inlet to the reactor. In most of the studied RBMK-1000 reactor accident scenarios, the critical values of fuel enthalpy, at which the process of fuel destruction begins, are reached first. An important result of the research is the conclusion that it is not necessary to reach supercriticality on instantaneous neutrons, supercriticality on delayed neutrons is also sufficient to initiate fuel destruction.

Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 419-436
Author(s):  
R. Kianpour ◽  
G. R. Ansarifar

Abstract The purpose of this study is to display the neutronic simulation of nanofluid application to reactor core. The variations of VVER-1000 nuclear reactor primary neutronic parameters are investigated by using different volume fraction of nanofluid as coolant. The effect of using nanofluid as coolant on reactor dynamical parameters which play an important role in the dynamical analysis of the reactor and safety core is calculated. In this paper coolant and fuel temperature reactivity coefficients in a VVER-1000 nuclear reactor with nanofluid as a coolant are calculated by using various volume fractions and different sizes of TiO2 (Titania) nanoparticle. For do this, firstly the equivalent cell of the hexagonal fuel rod and the surrounding coolant nanofluid is simulated. Then the thermal hydraulic calculations are performed at different volume fractions and sizes of the nanoparticle. Then, using WIMS and CITATION codes, the reactor core is simulated and the effect of coolant and fuel temperature changes on the effective multiplication factor is calculated. For doing optimization, an artificial neural network is trained in MATLAB using the observed data. The different sizes and various volume fractions are inputs, fuel and coolant temperature reactivity coefficients are outputs. The optimal size and volume fraction is determined using the neural network by implementing the genetic algorithms. In the optimization, volume fraction of 7% and size 77 nm are optimal values.


Author(s):  
Chi Wang ◽  
Xuebei Zhang ◽  
Jingchao Feng ◽  
Muhammad Shehzad Khan ◽  
Minyou Ye ◽  
...  

The simulation of 3D thermal-hydraulic problem for the pool type fast reactors, is one of the necessary and great importance. Most system codes can’t be used to simulate multi-dimensional thermal-hydraulics problems, whereas, the CFD method is suitable to deal with these type of simulation challenges. Based on the CFD method, a neutronics and thermohydraulic coupling code FLUENT/PK for nuclear reactor safety analysis by coupling the commercial CFD code FLUENT with the point kinetics model (PKM) and the pin thermal model (PTM) is developed by University of Science and Technology of China (USTC). The coupled code is verified by comparing with a series of benchmarks on beam interruptions in a lead-bismuth-cooled and MOX-fuelled accelerator-driven system. The variations of transient power, fuel temperature and outlet coolant temperature all agree well with the benchmark results. The validation results show that the code can be used to simulate the transient accidents of critical and sub-critical lead/lead-bismuth cooled reactors. Then this coupling code is used to evaluate the safety performance of MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) at unprotected beam over-power (UBOP) accident, and M2LFR-1000 (Medium-size Modular Lead-cooled Fast Reactor) at the unprotected transient over-power (UTOP) and unprotected loss of flow (ULOF) accident. The transient power, the temperature of coolant and fuel and multi-dimensional flow phenomena in upper plenum and lower plenum are presented and discussed in this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shengli Chen ◽  
Cenxi Yuan

Neutronic performance is investigated for a potential accident tolerant fuel (ATF), which consists of U3Si2fuel and FeCrAl cladding. In comparison with current UO2-Zr system, FeCrAl has a better oxidation resistance but a larger thermal neutron absorption cross section. U3Si2has a higher thermal conductivity and a higher uranium density, which can compensate the reactivity suppressed by FeCrAl. Based on neutronic investigations, a possible U3Si2-FeCrAl fuel-cladding system is taken into consideration. Fundamental properties of the suggested fuel-cladding combination are investigated in a fuel assembly. These properties include moderator and fuel temperature coefficients, control rods worth, radial power distribution (in a fuel rod), and different void reactivity coefficients. The present work proves that the new combination has less reactivity variation during its service lifetime. Although, compared with the current system, it has a little larger deviation on power distribution and a little less negative temperature coefficient and void reactivity coefficient and its control rods worth is less important, variations of these parameters are less important during the service lifetime of fuel. Hence, U3Si2-FeCrAl system is a potential ATF candidate from a neutronic view.


Author(s):  
Pei Shen ◽  
Wenzhong Zhou

Although no one would like to see, a severe nuclear reactor accident may result in reactor core melting, the fuel melt dropping into water in the reactor vessel, and then interacting with coolant into steam explosion. Steam explosion is a result of very rapid and intense heat transfer and violent interaction between the high temperature melt and low temperature coolant. The timescale for heat transfer is shorter than that for pressure relief, resulting in the formation of shock waves and/or the production of missiles at a later time during the expansion of coolant steam explosion. Steam explosion may endanger the reactor vessel and surrounding structures. During a severe reactor accident scenario, steam explosion is an important risk, even though its probability to occur is pretty low, since it could lead to large releases of radioactive material, and destroy the containment integrity. This study provides a comprehensive review of vapor explosion experiments, especially the most recent ones. In this review, fist, small to intermediate scale experiments related to premixing, triggering and propagation stages are reviewed and summarized in tables. Then the intermediate to large scale experiments using prototypic melt are reviewed and summarized. The recent OECD/SERENA2 project including KROTOS and TROI facilities’ work is also discussed. The studies on steam explosion are vital for reactor severe accident management, and will lead to improved reactor safety.


Author(s):  
Guangyao Lu ◽  
Zhaohui Lu ◽  
Wenyuan Xiang ◽  
Yonghong Lv ◽  
Wenyou Huang ◽  
...  

The control rod drive mechanism (CRDM) is installed on the CRDM socket in reactor pressure vessel (RPV). Directed by Rod Control and Rod Position Indicating System (RGL), CRDM can impel the control rods move up and down in the nuclear reactor core, which implements the functions of reactor start-up, power regulation, power maintaining, normal reactor shutdown and abnormal (accident) shutdown. CRDM was developed by China Nuclear Power Research Institute (CNPRI). Several design improvements were conducted to solve the problems appeared in the operation of nuclear power station. Test bench was also set up and cold tests were carried out to investigate the characteristics of CRDM. The cold tests included lifting experiment, inserting experiment, rod drop experiment. And studies were carried out to analyze the signals of lifting coil, moving coil, stationary coil and the vibration signals. The test results show that the design of CRDM is reasonable and the operation is reliable.


2021 ◽  
Vol 11 (1) ◽  
pp. 9-15
Author(s):  
Van Khanh Hoang ◽  
Vinh Thanh Tran ◽  
Dinh Hung Cao ◽  
Viet Ha Pham Nhu

This work presents the neutronic analysis of fuel design for a long-life core in a pressurized water reactor (PWR). In order to achieve a high burnup, a high enrichment U-235 is traditionally considered without special constraints against proliferation. To counter the excess reactivity, Erbium was selected as a burnable poison due to its good depletion performance. Calculations based on a standard fuel model were carried out for the PWR type core using SRAC code system. A parametric study was performed to quantify the neutronically achievable burnup at a number of enrichment levels and for a numerous geometries covering a wide design space of lattice pitch. The fuel temperature and coolant temperature reactivity coefficients as well as the small and large void reactivity coefficients are also investigated. It was found that it is possible to achieve sufficient criticality up to 100 GWd/tHM burnup without compromising the safety parameters.


Author(s):  
Motoo Fumizawa ◽  
Yuta Kosuge ◽  
Hidenori Horiuchi

This study presents a predictive thermal-hydraulic analysis with packed spheres in a nuclear gas-cooled reactor core. The predictive analysis considering the effects of high power density and the some porosity value were applied as a design condition for an Ultra High Temperature Reactor (UHTR). The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 °C was achieved in the case of an UHTREX at LASL, which was a small scale UHTR using hollow-rod as a fuel element. In the present study, the fuel was changed to a pebble type, a porous media. Several calculation based on HTGR-GT300 through GT600 were 4.8 w/cm3 through 9.6 w/cm3 respectively. As a result, the relation between the fuel temperature and the power density was obtained under the different system pressure and coolant outlet temperature. Finally, available design conditions are selected.


Author(s):  
Yanhua Zheng ◽  
Lei Shi

Reactivity accident due to inadvertent withdrawal of the control rod is one kind of the design basis accident for high temperature gas-cooled reactors, which should be analyzed carefully in order to validate the reactor inherent safety properties. Based on the preliminary design of the Chinese Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR-PM) with single module power of 250MW, several cases of reactivity accident has been studied by the help of the software TINTE in the paper, e.g., the first scram signal works or not, the absorber balls (secondary shutdown units) drop or not, and the ATWS situation is also taken into account. The dynamic processes of the important parameters including reactor power, fuel temperature and Xenon concentration are studied and compared in detail between these different cases. The calculating results show that, the decay heat during the reactivity accidents can be removed from the reactor core solely by means of physical processes in a passive way, so that the temperature limits of fuel element and other components are still obeyed, which can effectively keep the integrality of the fuel particles to avoid massive fission products release. This will be helpful to the further detail design of the HTR-PM demonstrating power plant project.


Sign in / Sign up

Export Citation Format

Share Document