scholarly journals Computational Fluid Dynamics Using a Porous Media Setting Predicts Outcome after Flow-Diverter Treatment

2020 ◽  
Vol 41 (11) ◽  
pp. 2107-2113
Author(s):  
M. Beppu ◽  
M. Tsuji ◽  
F. Ishida ◽  
M. Shirakawa ◽  
H. Suzuki ◽  
...  
2021 ◽  
Vol 10 (7) ◽  
pp. 1348
Author(s):  
Karol Wiśniewski ◽  
Bartłomiej Tomasik ◽  
Zbigniew Tyfa ◽  
Piotr Reorowicz ◽  
Ernest Bobeff ◽  
...  

Background: The objective of our project was to identify a late recanalization predictor in ruptured intracranial aneurysms treated with coil embolization. This goal was achieved by means of a statistical analysis followed by a computational fluid dynamics (CFD) with porous media modelling approach. Porous media CFD simulated the hemodynamics within the aneurysmal dome after coiling. Methods: Firstly, a retrospective single center analysis of 66 aneurysmal subarachnoid hemorrhage patients was conducted. The authors assessed morphometric parameters, packing density, first coil volume packing density (1st VPD) and recanalization rate on digital subtraction angiograms (DSA). The effectiveness of initial endovascular treatment was visually determined using the modified Raymond–Roy classification directly after the embolization and in a 6- and 12-month follow-up DSA. In the next step, a comparison between porous media CFD analyses and our statistical results was performed. A geometry used during numerical simulations based on a patient-specific anatomy, where the aneurysm dome was modelled as a separate, porous domain. To evaluate hemodynamic changes, CFD was utilized for a control case (without any porosity) and for a wide range of porosities that resembled 1–30% of VPD. Numerical analyses were performed in Ansys CFX solver. Results: A multivariate analysis showed that 1st VPD affected the late recanalization rate (p < 0.001). Its value was significantly greater in all patients without recanalization (p < 0.001). Receiver operating characteristic curves governed by the univariate analysis showed that the model for late recanalization prediction based on 1st VPD (AUC 0.94 (95%CI: 0.86–1.00) is the most important predictor of late recanalization (p < 0.001). A cut-off point of 10.56% (sensitivity—0.722; specificity—0.979) was confirmed as optimal in a computational fluid dynamics analysis. The CFD results indicate that pressure at the aneurysm wall and residual flow volume (blood volume with mean fluid velocity > 0.01 m/s) within the aneurysmal dome tended to asymptotically decrease when VPD exceeded 10%. Conclusions: High 1st VPD decreases the late recanalization rate in ruptured intracranial aneurysms treated with coil embolization (according to our statistical results > 10.56%). We present an easy intraoperatively calculable predictor which has the potential to be used in clinical practice as a tip to improve clinical outcomes.


2020 ◽  
Vol 1 (1) ◽  
pp. 85-88
Author(s):  
Masanori Tsuji ◽  
Fujimaro Ishida ◽  
Tomoyuki Kishimoto ◽  
Kazuhiro Furukawa ◽  
Yoichi Miura ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190222 ◽  
Author(s):  
Yasuyuki Umeda ◽  
Fujimaro Ishida ◽  
Masanori Tsuji ◽  
Kazuhiro Furukawa ◽  
Masato Shiba ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 22-32
Author(s):  
Joseph Ebelait ◽  
Semwogerere Twaibu ◽  
Moses Nagulama ◽  
Asaph Muhumuza Keikara

This study describes the linkage leakage in sewage pipes through a porous media using computational fluid dynamics with the presence of one leak through fluid simulations using the Ansys fluent 17.2 commercial software based on standard k-ε model under steady-state condition. The pipe section is three-dimensional with a pipe length of 40 mm, a pipe diameter of 20 mm, and leak orifice diameter of 2 mm with a porous media of length 25 mm and width 30 mm. The interest of this study was to reduce the rate of sewage leakage in pipes laid underground by use computational fluid dynamics. The simulation results obtained shows that when the flow is subjected to an outlet pressure between 100000 Pa to 275000 Pa the sewage leaks at pressures of 99499 Pa to 278799.8 Pa indicating that increase of outlet pressures increases the pressure at the leak point and also an increase in the inlet velocity resulted into an increase of velocity at the leak point and no significant change in sewage flow rate with increased inlet velocities. Therefore, monitoring of the pressure and velocity fields along the pipeline is an extremely important tool to identify leaks since these fields are affected by perturbations both before the leak point and after the leak point.


Sign in / Sign up

Export Citation Format

Share Document