Diffusion Tensor Imaging Tractography Tutorial and Introduction to Major White Matter Tract Anatomy and Function

Neurographics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 62-74 ◽  
Author(s):  
T.A. Hijaz ◽  
E.N. McComb ◽  
S. Badhe ◽  
B.P. Liu ◽  
A.W. Korutz
Author(s):  
Shawn D’Souza ◽  
Lisa Hirt ◽  
David R Ormond ◽  
John A Thompson

Abstract Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.


NeuroImage ◽  
2004 ◽  
Vol 22 (3) ◽  
pp. 1302-1314 ◽  
Author(s):  
Savannah C Partridge ◽  
Pratik Mukherjee ◽  
Roland G Henry ◽  
Steven P Miller ◽  
Jeffrey I Berman ◽  
...  

2003 ◽  
Vol 58 (6) ◽  
pp. 455-462 ◽  
Author(s):  
S.J. Price ◽  
N.G. Burnet ◽  
T. Donovan ◽  
H.A.L. Green ◽  
A. Peña ◽  
...  

Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


2016 ◽  
Vol 117 (1) ◽  
pp. 213-220 ◽  
Author(s):  
Po-Shan Wang ◽  
Chien-Li Yeh ◽  
Chia-Feng Lu ◽  
Hsiu-Mei Wu ◽  
Bing-Wen Soong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document