GROUNDWATER FLOW MODEL OF OIL SHALE MINING AREA

Oil Shale ◽  
2010 ◽  
Vol 27 (3) ◽  
pp. 258 ◽  
Author(s):  
H LIND
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


Author(s):  
Samrit Luoma ◽  
Juha Majaniemi ◽  
Arto Pullinen ◽  
Juha Mursu ◽  
Joonas J. Virtasalo

AbstractThree-dimensional geological and groundwater flow models of a submarine groundwater discharge (SGD) site at Hanko (Finland), in the northern Baltic Sea, have been developed to provide a geological framework and a tool for the estimation of SGD rates into the coastal sea. The dataset used consists of gravimetric, ground-penetrating radar and shallow seismic surveys, drill logs, groundwater level monitoring data, field observations, and a LiDAR digital elevation model. The geological model is constrained by the local geometry of late Pleistocene and Holocene deposits, including till, glacial coarse-grained and fine-grained sediments, post-glacial mud, and coarse-grained littoral and aeolian deposits. The coarse-grained aquifer sediments form a shallow shore platform that extends approximately 100–250 m offshore, where the unit slopes steeply seawards and becomes covered by glacial and post-glacial muds. Groundwater flow preferentially takes place in channel-fill outwash coarse-grained sediments and sand and gravel interbeds that provide conduits of higher hydraulic conductivity, and have led to the formation of pockmarks on the seafloor in areas of thin or absent mud cover. The groundwater flow model estimated the average SGD rate per square meter of the seafloor at 0.22 cm day−1 in autumn 2017. The average SGD rate increased to 0.28 cm day−1 as a response to an approximately 30% increase in recharge in spring 2020. Sensitivity analysis shows that recharge has a larger influence on SGD rate compared with aquifer hydraulic conductivity and the seafloor conductance. An increase in recharge in this region will cause more SGD into the Baltic Sea.


2018 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Muhammad Usman ◽  
Thomas Reimann ◽  
Rudolf Liedl ◽  
Azhar Abbas ◽  
Christopher Conrad ◽  
...  

2021 ◽  
pp. 91-97
Author(s):  
V. V. Suskin ◽  
A. V. Rastorguev ◽  
I. V. Kapyrin

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.


1992 ◽  
Vol 29 (4) ◽  
pp. 696-701
Author(s):  
Denis Isabel ◽  
Pierre Gélinas ◽  
Jacques Locat

The groundwater pollution case at Mercier is a very complex one. Groundwater flow modeling has been a valuable tool in the assessment of this large environmental problem. However, due to the complexity of the hydrogeological setting, the modeling has been performed with various simple case models in lieu of a large complex model. Here we report the results of one of these piecewise modeling tasks that proved very useful in the explanation of the strong upward gradients observed in the bedrock aquifer. These results and their interpretation prove the usefulness of the piecewise modeling strategy in this case. Key words : ground water modeling, finite elements.


2005 ◽  
Vol 42 (5) ◽  
pp. 1461-1473 ◽  
Author(s):  
B D Smerdon ◽  
C A Mendoza ◽  
A M McCann

Quantitative investigations, including two aquifer tests and development of a three-dimensional (3D) groundwater flow model, were required to determine the hydraulic connection between an irrigation reservoir and a buried valley aquifer in southern Alberta. Evidence of seepage was detected in the buried valley aquifer 10 km east of the Pine Coulee reservoir at the onset of filling in 1999, when the reservoir level exceeded an elevation of 1035 m above sea level (a.s.l.). Concern for an increase in the local water table and the creation of artesian conditions in the aquifer prompted this study to determine the approximate location of a seepage window that appeared to be connecting the reservoir and aquifer. Observations of hydraulic head in the aquifer during the pumping tests revealed a barrier boundary when the reservoir level was at an elevation of 1035 m a.s.l. and a recharge boundary condition when the elevation exceeded 1039 m a.s.l. These data were used to calibrate a 3D groundwater flow model, which was needed to determine the hydraulic properties and approximate location of the leakage zone. The quantitative investigation showed that seepage likely occurred through the sideslopes of the flooded coulee, rather than through the low-permeability coulee floor sediments or the embankment dam. Further simulations illustrated the expected seepage rates at various reservoir supply levels and the pumping rates required for relief wells installed in the buried valley aquifer to maintain historic aquifer hydraulic head. A brief postanalysis indicated that the forecasted pumping rates were only 15% lower than have been required to maintain preconstruction water levels in the buried valley aquifer.Key words: dams, seepage analysis, groundwater modelling, buried valley aquifer, pumping test.


Sign in / Sign up

Export Citation Format

Share Document