scholarly journals Conceptual and Mathematical Modeling of a Coastal Aquifer in Eastern Delta of R. Nestos (N. Greece)

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.

2021 ◽  
Author(s):  
Emmanouil Varouchakis ◽  
Leonardo Azevedo ◽  
João L. Pereira ◽  
Ioannis Trichakis ◽  
George P. Karatzas ◽  
...  

<p>Groundwater resources in Mediterranean coastal aquifers are under threat due to overexploitation and climate change impacts, resulting in saltwater intrusion. This situation is deteriorated by the absence of sustainable groundwater resources management plans. Efficient management and monitoring of groundwater systems requires interpreting all sources of available data. This work aims at the development of a set of plausible 3D geological models combining 2D geophysical profiles, spatial data analytics and geostatistical simulation techniques. The resulting set of models represents possible scenarios of the structure of the coastal aquifer system under investigation. Inverted resistivity profiles, along with borehole data, are explored using spatial data science techniques to identify regions associated with higher uncertainty. Relevant parts of the profiles will be used to generate 3D models after detailed Anisotropy and variogram analysis. Multidimensional statistical techniques are then used to select representative models of the true subsurface while exploring the uncertainty space. The resulting models will help to identify primary gaps in existing knowledge about the groundwater system and to optimize the groundwater monitoring network. A comparison with a numerical groundwater flow model will identify similarities and differences and it will be used to develop a typical hydrogeological model, which will aid the management and monitoring of the area's groundwater resources. This work will help the development of a reliable groundwater flow model to investigate future groundwater level fluctuations at the study area under climate change scenarios.</p><p> </p><p>This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 1923.</p>


2014 ◽  
Vol 5 (3) ◽  
pp. 457-471 ◽  
Author(s):  
M. Mastrocicco ◽  
N. Colombani ◽  
A. Gargini

A modelling study on a multi-layered confined/unconfined alluvial aquifer system was performed to quantify surface water/groundwater interactions. The calibrated groundwater flow model was used to forecast climate change impacts by implementing the results of a downscaled A1B model ensemble for the Po river valley. The modelled area is located in the north-western portion of the Ferrara Province (Northern Italy), along the eastern bank of the Po river. The modelling procedure started with a large scale steady state model followed by a transient flow model for the central portion of the domain, where a telescopic mesh refinement was applied. The calibration performance of both models was satisfactory, in both drought and flooding conditions. Subsequently, forecasted rainfall, evapotranspiration and Po river stage at 2050, were implemented in the calibrated large scale groundwater flow model and their uncertainties discussed. Three scenarios were run on the large scale model: the first simulating mean hydrological conditions and the other two simulating one standard deviation above and below the mean hydrological conditions. The forecasted variations in groundwater/Po river fluxes are relevant, with a general increase of groundwater levels due to local conditions, although there are large uncertainties in the predicted variables.


Sign in / Sign up

Export Citation Format

Share Document