scholarly journals The effect of water and zinc loading on LPG catalytic cracking for light olefin production using Response Surface Methodology

2021 ◽  
Vol 70 (2) ◽  
pp. 135
Author(s):  
B Barghi ◽  
A Niidu
2015 ◽  
Vol 15 (10) ◽  
pp. 8311-8317 ◽  
Author(s):  
Joongwon Lee ◽  
Seungwon Park ◽  
Ung Gi Hong ◽  
Jin Oh Jun ◽  
In Kyu Song

Surface modification of phosphorous-containing porous ZSM-5 catalyst (P/C-ZSM5-Sil.(X)) was carried out by a chemical liquid deposition (CLD) method using tetraethyl orthosilicate (TEOS) as a silylation agent. Different amount of TEOS (X = 5, 10, 20, and 30 wt%) was introduced into P/C-ZSM5il.(X) catalysts for surface modification. The catalysts were used for the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. It was found that external surface acidity of P/C-ZSM5-Sil.(X) catalysts significantly decreased with increasing TEOS content. In the catalytic reaction, both conversion of C5 raffinate and yield for light olefins showed volcano-shaped curves with respect to TEOS content. Among the catalysts tested, P/C-ZSM5- Sil.(20) catalyst exhibited the best catalytic performance in terms of conversion of C5 raffinate and yield for light olefins. Thus, an optimal TEOS content was required for CLD treatment to maximize light olefin production in the catalytic cracking of C5 raffinate over P/C-ZSM5-Sil.(X) catalysts.


2015 ◽  
Vol 145 (5) ◽  
pp. 1186-1195 ◽  
Author(s):  
Ameneh Rahbar ◽  
Mehdi Nekoomanesh-Haghighi ◽  
Naeimeh Bahri-Laleh ◽  
Hossein Abedini

1970 ◽  
Vol 2 (1) ◽  
Author(s):  
F. A. A. Twaiq and S. Bhatia ◽  
N. A. M. Zabidi

The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY) zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE) with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM) were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.


2021 ◽  
pp. 111-142
Author(s):  
Selvaganapathy Thambiyapillai ◽  
Muthuvelayudham Ramanujam ◽  
Jayakumar Mani

Sign in / Sign up

Export Citation Format

Share Document