scholarly journals Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

1970 ◽  
Vol 2 (1) ◽  
Author(s):  
F. A. A. Twaiq and S. Bhatia ◽  
N. A. M. Zabidi

The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY) zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE) with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM) were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


2015 ◽  
Vol 4 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Sri Kadarwati ◽  
Sri Wahyuni

Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni) at various reaction temperatures (400-500oC) in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO3)2.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol) and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Teymor Tavakoli Hashjin ◽  
Barat Ghobadian ◽  
Gholamhasan Najafi ◽  
Stefano Mantegna ◽  
...  

AbstractThis work investigates the effect of simultaneous ultrasound-microwave irradiation on palm oil transesterification and uncovers optimal operating conditions. Response surface methodology (RSM) has been used to analyze the influence of reaction conditions, including methanol/palm oil molar ratio, catalyst concentration, reaction temperature and irradiation time on biodiesel yield. RSM analyses indicate 136 s and 129 s as the optimal sonication and microwave irradiation times, respectively. Optimized parameters for full conversion (97.53%) are 1.09% catalyst concentration and a 7:3.1 methanol/oil molar ratio at 58.4°C. Simultaneous ultrasound-microwave irradiation dramatically accelerates the palm oil transesterification reaction. Pure biodiesel was obtained after only 2.2 min while the conventional method requires about 1 h.


2018 ◽  
Vol 11 (23) ◽  
pp. 1121-1133
Author(s):  
Candelaria Tejada-Tovar ◽  
Angel Villabona ◽  
Angelica Cabarcas ◽  
Cristian Benitez ◽  
Diofanor Acevedo

2020 ◽  
Author(s):  
Zaber Ahmed ◽  
Mohd Suffian Yusoff ◽  
Nurul Hana Mokhtar Kamal ◽  
Hamidi Abdul Aziz

Abstract Malaysia is the 2nd largest in palm oil export, and after overcoming economic age (average 25 years), the palm oil trees entail to replace usually. Therefore, a massive quantity of palm oil trunk biomass, containing a significant amount of starch, is available as bio-waste annually. The efficient extraction of this starch (carbohydrate polymer) would be worthwhile concerning the environment, economy, conversion of biowaste to bioresources, and waste dumping challenges. Central composite design executed an experimental model design, evaluated the impacts of process variables and their interaction through response surface methodology to optimize the novel bisulfite steeping method for starch synthesis. Design-Expert software performed the data analysis. The developed quadratic models for four factors (Strength of Sodium bisulfite solution, steeping hour, mixing ratio with the bisulfite solution and ultra-pure water) and one response (%Yield), demonstrated that a significant starch yield (13.54%) is achievable utilizing 0.74% bisulfite solution, 5.6 steeping hours, for 1.6 and 0.6 mixing ratio with the bisulfite solution and ultra-pure water respectively. Experimental outcomes were quite consistent with the predicted model, which eventually sustains the significance of this method. Malvern Zetasizer test revealed a bimodal granular distribution for starch, with 7.15µm of hydrodynamic size. Starch morphology was determined by scanning electron microscopy. X-ray diffraction investigation exhibits an A-type model, specifying persistent characteristics of extracted starch.


Sign in / Sign up

Export Citation Format

Share Document