scholarly journals Determinants of Disuse-Induced Skeletal Muscle Atrophy: Exercise and Nutrition Countermeasures to Prevent Protein Loss

2006 ◽  
Vol 52 (4) ◽  
pp. 233-247 ◽  
Author(s):  
Gustavo BAJOTTO ◽  
Yoshiharu SHIMOMURA
2004 ◽  
Vol 287 (4) ◽  
pp. C834-C843 ◽  
Author(s):  
Robert W. Jackman ◽  
Susan C. Kandarian

Skeletal muscle atrophy attributable to muscular inactivity has significant adverse functional consequences. While the initiating physiological event leading to atrophy seems to be the loss of muscle tension and a good deal of the physiology of muscle atrophy has been characterized, little is known about the triggers or the molecular signaling events underlying this process. Decreases in protein synthesis and increases in protein degradation both have been shown to contribute to muscle protein loss due to disuse, and recent work has delineated elements of both synthetic and proteolytic processes underlying muscle atrophy. It is also becoming evident that interactions among known proteolytic pathways (ubiquitin-proteasome, lysosomal, and calpain) are involved in muscle proteolysis during atrophy. Factors such as TNF-α, glucocorticoids, myostatin, and reactive oxygen species can induce muscle protein loss under specified conditions. Also, it is now apparent that the transcription factor NF-κB is a key intracellular signal transducer in disuse atrophy. Transcriptional profiles of atrophying muscle show both up- and downregulation of various genes over time, thus providing further evidence that there are multiple concurrent processes involved in muscle atrophy. The purpose of this review is to synthesize our current understanding of the molecular regulation of muscle atrophy. We also discuss how ongoing work should uncover more about the molecular underpinnings of muscle wasting, particularly that due to disuse.


2011 ◽  
Vol 301 (5) ◽  
pp. C995-C1007 ◽  
Author(s):  
Koen J. P. Verhees ◽  
Annemie M. W. J. Schols ◽  
Marco C. J. M. Kelders ◽  
Céline M. H. Op den Kamp ◽  
Jos L. J. van der Velden ◽  
...  

Skeletal muscle atrophy commonly occurs in acute and chronic disease. The expression of the muscle-specific E3 ligases atrogin-1 (MAFbx) and muscle RING finger 1 (MuRF1) is induced by atrophy stimuli such as glucocorticoids or absence of IGF-I/insulin and subsequent Akt signaling. We investigated whether glycogen synthase kinase-3β (GSK-3β), a downstream molecule in IGF-I/Akt signaling, is required for basal and atrophy stimulus-induced expression of atrogin-1 and MuRF1, and myofibrillar protein loss in C2C12 skeletal myotubes. Abrogation of basal IGF-I signaling, using LY294002, resulted in a prominent induction of atrogin-1 and MuRF1 mRNA and was accompanied by a loss of myosin heavy chain fast (MyHC-f) and myosin light chains 1 (MyLC-1) and -3 (MyLC-3). The synthetic glucocorticoid dexamethasone (Dex) also induced the expression of both atrogenes and likewise resulted in the loss of myosin protein abundance. Genetic ablation of GSK-3β using small interfering RNA resulted in specific sparing of MyHC-f, MyLC-1, and MyLC-3 protein levels after Dex treatment or impaired IGF-I/Akt signaling. Interestingly, loss of endogenous GSK-3β suppressed both basal and atrophy stimulus-induced atrogin-1 and MuRF1 expression, whereas pharmacological GSK-3β inhibition, using CHIR99021 or LiCl, only reduced atrogin-1 mRNA levels in response to LY294002 or Dex. In conclusion, our data reveal that myotube atrophy and myofibrillar protein loss are GSK-3β dependent, and demonstrate for the first time that basal and atrophy stimulus-induced atrogin-1 mRNA expression requires GSK-3β enzymatic activity, whereas MuRF1 expression depends solely on the physical presence of GSK-3β.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 807
Author(s):  
Silvia Ravalli ◽  
Concetta Federico ◽  
Giovanni Lauretta ◽  
Salvatore Saccone ◽  
Elisabetta Pricoco ◽  
...  

Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protocol for either 4 weeks or 16 weeks compared to sedentary rats. Histomorphometric analysis of muscle fibers diameter revealed muscle atrophy in sedentary rats. Telocytes were identified by double-positive immunofluorescence staining for CD34/CD117 and CD34/vimentin. The results showed that Telocytes were significantly reduced in sedentary rats at 16 weeks, while rats subjected to regular exercise maintained a stable Telocytes population after 16 weeks. Understanding of the relationship between Telocytes and exercise offers new chances in the field of regenerative medicine, suggesting possible triggers for Telocytes in sarcopenia and other musculoskeletal disorders, promoting adapted physical activity and rehabilitation programmes in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document