Inactivation of Diphtheria Toxin in vivo and in vitro by Crystalline Vitamin C (Ascorbic Acid).

1935 ◽  
Vol 32 (8) ◽  
pp. 1229-1234 ◽  
Author(s):  
C. W. Jungeblut ◽  
R. L. Zwemer
1935 ◽  
Vol 31 (11-12) ◽  
pp. 1341-1341
Author(s):  
C. W. Jungeblut ◽  
R. L. Zwemer

The authors believe, on the basis of various literature sources as well as their own work, that the body's natural immunity to various infectious diseases depends to a large extent on the function of the adrenal cortex. Vitamin C, one of the important components of the adrenal cortex, has been found to be of great importance here.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2564-2564 ◽  
Author(s):  
James Berenson ◽  
Ralph Boccia ◽  
David Siegel ◽  
Marek Bozdech ◽  
Alberto Bessudo ◽  
...  

Abstract Background: Despite the recent increase in treatment options for patients with multiple myeloma (MM), the disease remains largely incurable. Both arsenic trioxide (ATO) and melphalan have shown clinical activity in MM. Recent in vitro and in vivo studies in our laboratory have shown that arsenic trioxide sensitizes chemoresistant MM cells to melphalan-induced cytotoxicity; the addition of ascorbic acid (AA) further improves this effect. We conducted a multi-center clinical trial to evaluate the safety and efficacy of this steroid-free combination, melphalan, ATO and vitamin C (MAC), for patients with relapsed/refractory MM. Methods: MM pts who relapsed after responding to 1st-line therapy and/or were refractory to prior treatment were enrolled. During week 1 of each 6-week cycle, pts received ATO, 0.25 mg/kg IV, followed by ascorbic acid (AA), 1 g IV, days 1–4. ATO followed by AA was given twice-weekly for the next 4 weeks of each cycle. Low-dose melphalan (0.10 mg/kg) was administered orally for the first 4 days of each cycle. Pts received a maximum of 6 cycles followed by weekly maintenance treatment with ATO and AA. The primary objectives of this study were to determine response rate and safety and tolerability of MAC therapy. Results: 65 patients have been enrolled and 51 are currently evaluable for response. 26 (1 CR, 10 PR, 15 MR) of the 51 evaluable patients (51%) had an objective response and an additional 14 patients achieved stable disease, resulting in a total of 40 patients (78%) with disease control. Among patients with elevated serum creatinine levels at baseline, renal function improved for those with responsive or stable disease. 20 of the 26 responding patients had failed ≥ 2 prior therapies: 19 pts had received prior thalidomide or lenalidomide therapy and 8 pts had received prior bortezomib. The regimen was well-tolerated with few significant side effects reported. Mild cytopenias occurred infrequently and were reversible. Conclusions: The results from this large multi-center phase II trial show that the MAC regimen is active in a group of MM patients who had either relapsed or were refractory to standard and/or investigational MM treatments. The regimen was well-tolerated even in this heavily pre-treated patient population. These findings are consistent with preclinical studies that showed the efficacy of this combination from both in vitro and in vivo studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Veedamali S. Subramanian ◽  
Trevor Teafatiller ◽  
Anshu Agrawal ◽  
Masashi Kitazawa ◽  
Jonathan S. Marchant

Vitamin C (ascorbic acid: AA) uptake in neurons occurs via the sodium-dependent vitamin C transporter-2 (SVCT2), which is highly expressed in the central nervous system (CNS). During chronic neuroinflammation or infection, CNS levels of lipopolysaccharide (LPS) and LPS-induced tumor necrosis factor-α (TNFα) are increased. Elevated levels of LPS and TNFα have been associated with neurodegenerative diseases together with reduced levels of AA. However, little is known about the impacts of LPS and TNFα on neuronal AA uptake. The objective of this study was to examine the effect of LPS and TNFα on SVCT2 expression and function using in vitro and in vivo approaches. Treatment of SH-SY5Y cells with either LPS or TNFα inhibited AA uptake. This reduced uptake was associated with a significant decrease in SVCT2 protein and mRNA levels. In vivo exposure to LPS or TNFα also decreased SVCT2 protein and mRNA levels in mouse brains. Both LPS and TNFα decreased SLC23A2 promoter activity. Further, the inhibitory effect of LPS on a minimal SLC23A2 promoter was attenuated when either the binding site for the transcription factor Sp1 was mutated or cells were treated with the NF-κB inhibitor, celastrol. We conclude that inflammatory signals suppress AA uptake by impairing SLC23A2 transcription through opposing regulation of Sp1 and NF-κB factors.


1998 ◽  
Vol 44 (3) ◽  
pp. 345-359 ◽  
Author(s):  
Yoshimaru KUMANO ◽  
Tetsuo SAKAMOTO ◽  
Mariko EGAWA ◽  
Ichiro IWAI ◽  
Muneo TANAKA ◽  
...  

2000 ◽  
Vol 84 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Iona M. J. Hamilton ◽  
William S. Gilmore ◽  
Iris F. F. Benzie ◽  
Clive W. Mulholland ◽  
J. J. Strain

Despite convincingin vitroevidence, a vitamin C–E interaction has not been confirmedin vivo. This study was designed to examine the effects of supplementation with either vitamin C or E on their respective plasma concentrations, other antioxidants, lipids and some haemostatic variables. Fasting blood was collected before and after intervention from thirty healthy adults in a double-blinded crossover study. Baselines for measured variables were established after 2 weeks of placebo supplementation, followed by daily supplementation with 73·5 mgRRR-α-tocopherol acetate or 500 mg ascorbic acid, and placebo, for 6 weeks. A 2 month washout preceded supplement crossover. Mean values showed that plasma lipid standardised α-tocopherol increased with ascorbic acid supplementation: from 4·09 (SEM 0·51) TO 4·53 (sem 0·66) μmol/mmol total cholesterol plus triacylglycerol (P< 0·05), and plasma ascorbic acid increased from 62·8 (sem 14·9) to 101·3 (sem 22·2) μmol/l (P< 0·005). Supplementation with (RRR)-α-tocopherol acetate increased plasma α-tocopherol from 26·8 (sem 3·9) to 32·2 (sem 3·8) μmol/l (P< 0·05), and lipid-standardised α-tocopherol from 4·12 (sem 0·48) to 5·38 (sem 0·52) μmol/mmol (P< 0·001). Mean plasma ascorbic acid also increased with vitamin E supplementation, from 64·4 (sem 13·3) to 76·4 (sem 18·4) μmol/l (P< 0·05). Plasma ferric reducing (antioxidant) power and glutathione peroxidase (U/g haemoglobin) increased in both groups, while urate, total cholesterol and triacylglycerol levels decreased (P< 0·05 throughout). Results are supportive of anin vivointeraction between vitamins C and E.


Diabetes ◽  
1989 ◽  
Vol 38 (8) ◽  
pp. 1036-1041 ◽  
Author(s):  
J. A. Vinson ◽  
M. E. Staretz ◽  
P. Bose ◽  
H. M. Kassm ◽  
B. S. Basalyga
Keyword(s):  

1963 ◽  
Vol 204 (1) ◽  
pp. 171-175 ◽  
Author(s):  
W. S. Ruliffson ◽  
J. M. Hopping

The effects in rats, of age, iron-deficiency anemia, and ascorbic acid, citrate, fluoride, and ethylenediaminetetraacetate (EDTA) on enteric radioiron transport were studied in vitro by an everted gut-sac technique. Sacs from young animals transported more than those from older ones. Proximal jejunal sacs from anemic animals transported more than similar sacs from nonanemic rats, but the reverse effect appeared in sacs formed from proximal duodenum. When added to media containing ascorbic acid or citrate, fluoride depressed transport as did anaerobic incubation in the presence of ascorbic acid. Anaerobic incubation in the presence of EDTA appeared to permit elevated transport. Ascorbic acid, citrate, and EDTA all enhanced the level of Fe59 appearing in serosal media. These results appear to agree with previously established in vivo phenomena and tend to validate the in vitro method as one of promise for further studies of factors affecting iron absorption and of the mechanism of iron absorption.


1979 ◽  
Author(s):  
K.E. Sarji ◽  
J. Gonzalez ◽  
H. Hempling ◽  
J.A. Colwell

To determine whether Vitamin C might relate to the increased platelet sensitivity in the diabetic, we have measured levels of platelet Vitamin C and studied the effects of Vitamin C on platelet aggregation. Ascorbic acid levels in washed platelets from diabetics were significantly lower than from normals (4s.2±3 μg/1010 platelets vs. 2s.s±2 μg/1010 platelets, p<.001). The effects of ascorbic acid on platelet aggregation in vitro were studied by adding ascorbic acid in buffered solution (pH 7.35) prior to-aggregating agents. Ascorbic acid in platelet-rich plasma consistently inhibited platelet aggregation with threshold concentrations of ADP, epinephrine, and collagen. With washed platelets, ascorbic acid inhibited arachidonic, acid-induced aggregation. When platelets were incubated at 37°C for 10 minutes with varying concentrations of ascorbic acid, rewashed, and aggregation with arachidonic acid tested, aggregation was inhibited in a linear dose-dependent fashion. Oral ingestion of ascorbic acid (2 gm/day) for seven days by normal non-smoking males produced a marked inhibition of aggregation. In a similar study, platelets from an insulin-dependent diabetic showed no change in aggregation. These results suggest that platelet levels of ascorbic acid may relate to the hyperaggregat ion of platelets from diabetics.


1983 ◽  
Vol 117 (1-2) ◽  
pp. 183-191 ◽  
Author(s):  
E.P. Norkus ◽  
W. Kuenzig ◽  
A.H. Conney

1981 ◽  
Vol 7 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Kristin H. Milby ◽  
Ivan N. Mefford ◽  
Willie Chey ◽  
Ralph N. Adams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document