EXPERIMENTAL VALIDATION OF HIGH SPEED HAZARD AVOIDANCE CONTROL FOR UNMANNED GROUND VEHICLES

2006 ◽  
Vol 39 (15) ◽  
pp. 604-609 ◽  
Author(s):  
Matthew Spenko ◽  
Steven Dubowsky ◽  
Karl Iagnemma
Author(s):  
Jiechao Liu ◽  
Paramsothy Jayakumar ◽  
James L. Overholt ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Unmanned ground vehicles (UGVs) are gaining importance and finding increased utility in both military and commercial applications. Although earlier UGV platforms were typically exclusively small ground robots, recent efforts started targeting passenger vehicle and larger size platforms. Due to their size and speed, these platforms have significantly different dynamics than small robots, and therefore the existing hazard avoidance algorithms, which were developed for small robots, may not deliver the desired performance. The goal of this paper is to present the first steps towards a model predictive control (MPC) based hazard avoidance algorithm for large UGVs that accounts for the vehicle dynamics through high fidelity models and uses only local information about the environment as provided by the onboard sensors. Specifically, the paper presents the MPC formulation for hazard avoidance using a light detection and ranging (LIDAR) sensor and applies it to a case study to investigate the impact of model fidelity on the performance of the algorithm, where performance is measured mainly by the time to reach the target point. Towards this end, the case study compares a 2 degrees-of-freedom (DoF) vehicle dynamics representation to a 14 DoF representation as the model used in MPC. The results show that the 2 DoF model can perform comparable to the 14 DoF model if the safe steering range is established using the 14 DoF model rather than the 2 DoF model itself. The conclusion is that high fidelity models are needed to push autonomous vehicles to their limits to increase their performance, but simulating the high fidelity models online within the MPC may not be as critical as using them to establish the safe control input limits.


Robotica ◽  
2007 ◽  
Vol 25 (4) ◽  
pp. 409-424 ◽  
Author(s):  
Shingo Shimoda ◽  
Yoji Kuroda ◽  
Karl Iagnemma

SUMMARYMany applications require unmanned ground vehicles (UGVs) to travel at high speeds on sloped, natural terrain. In this paper, a potential field-based method is proposed for UGV navigation in such scenarios. In the proposed approach, a potential field is generated in the two-dimensional “trajectory space” of the UGV path curvature and longitudinal velocity. In contrast to traditional potential field methods, dynamic constraints and the effect of changing terrain conditions can be easily expressed in the proposed framework. A maneuver is chosen within a set of performance bounds, based on the local potential field gradient. It is shown that the proposed method is subject to local maxima problems, rather than local minima. A simple randomization technique is proposed to address this problem. Simulation and experimental results show that the proposed method can successfully navigate a small UGV between predefined waypoints at speeds up to 7.0 m/s, while avoiding static hazards. Further, vehicle curvature and velocity are controlled during vehicle motion to avoid rollover and excessive side slip. The method is computationally efficient, and thus suitable for onboard real-time implementation.


Author(s):  
Yugang Ding ◽  
Kedong Zhou ◽  
Lei He ◽  
Haomin Yang

The muzzle response is the main feature affecting the firing accuracy of weapons. To research the muzzle response characteristics of small unmanned ground vehicles with small arms (SUGVsSA) during shooting, this paper designs a test method that combines an inertial measurement system (IMS) with a high-speed photogrammetric system (HSPS) to measure the muzzle response. That is, an inertial measurement unit (IMU) is fixed onto the gun body to record the three-dimensional angular motion of the barrel; meanwhile, a high-speed camera is used to capture the characteristic markers of the unmanned ground vehicle from the side. After data processing, the muzzle response curves during four consecutive firings when the vehicle is running at different speeds and firing angles are obtained. Considering the presence of noise in muzzle response signals, the wavelet threshold de-noising (WTD) algorithm based on a novel variable threshold function is used to de-noise the test signal. The processing results demonstrate that the WTD algorithm based on the novel variable threshold function can not only suppress noise in the muzzle response signal but also retain the local details of the signal. The combination of the IMS and HSPS complements the muzzle response data and can comprehensively and accurately reflect the muzzle response characteristics of SUGVsSA. As the vehicle speed and firing angle increase, the muzzle vibration intensifies, only when the vehicle speed is 0.3 m/s, and the muzzle maximum elevation angle displacement after each firing decreases when it is stationary. The results presented in this paper may provide a workable reference for understanding the muzzle response characteristics of SUGVsSA and evaluating the firearm compatibility of other unmanned systems.


Sign in / Sign up

Export Citation Format

Share Document