scholarly journals Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of Magnetic Shape Memory actuators

2013 ◽  
Vol 46 (14) ◽  
pp. 66-71
Author(s):  
A. Hubert ◽  
N. Calchand ◽  
Y. Le Gorrec
2011 ◽  
Vol 674 ◽  
pp. 171-175
Author(s):  
Katarzyna Bałdys ◽  
Grzegorz Dercz ◽  
Łukasz Madej

The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with FSMA is magnetic shape memory, which gives a possibility to achieve relatively high strain (over 8%) caused by magnetic field. In this paper the effect of annealing on the microstructure and martensitic transition on Ni-Mn-Co-In ferromagnetic shape memory alloy has been studied. The alloy was prepared by melting of 99,98% pure Ni, 99,98% pure Mn, 99,98% pure Co, 99,99% pure In. The chemical composition, its homogeneity and the alloy microstructure were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase composition was also studied by X-ray analysis. The transformation course and characteristic temperatures were determined by the use of differential scanning calorimetry (DSC) and magnetic balance techniques. The results show that Tc of the annealed sample was found to decrease with increasing the annealing temperature. The Ms and Af increases with increasing annealing temperatures and showed best results in 1173K. The studied alloy exhibits a martensitic transformation from a L21 austenite to a martensite phase with a 7-layer (14M) and 5-layer (10M) modulated structure. The lattice constants of the L21 (a0) structure determined by TEM and X-ray analysis in this alloy were a0=0,4866. The TEM observation exhibit that the studied alloy in initial state has bigger accumulations of 10M and 14M structures as opposed from the annealed state.


Author(s):  
Sven Langbein ◽  
Alexander Czechowicz

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide, these elements are only seldom integrated by engineers into mechatronical systems. Reasons are the complex characteristics, especially at different boundary conditions and the missing simulation- and design tools. Also the lack of knowledge and empirical data are a reason why development projects with shape memory actuators often lead to failures. Therefore, a need of developing methods, standardized testing of empirical properties and computer aided simulation tools is motivated. While computer-aided approaches have been discussed in further papers, as well as standardization potentials of SMA actuators, this paper focuses on a developing method for SMA actuators. The main part of the publication presents the logical steps which have to be passed, in order to develop an SMA actuator, considering several options like mechanical, thermal, and electrical options. As a result of the research work, the paper proves this method by one example in the field of SMA-valve technology.


Author(s):  
Johannes Ziske ◽  
Fabian Ehle ◽  
Holger Neubert

Smart materials, such as thermal or magnetic shape memory alloys, provide interesting characteristics for new solid state actuators. However, their behavior is highly nonlinear and determined by strong hysteresis effects. This complex behavior must be adequately considered in simulation models which can be applied for efficient actuator design and optimization. We present a new phenomenological lumped element model for magnetic shape memory alloys (MSM). The model takes into account the two-dimensional hysteresis of the magnetic field induced strain as a function of both the compressive stress and the magnetic flux density. It is implemented in Modelica. The model bases on measured limiting hysteresis surfaces which are material specific. An extended Tellinen hysteresis modeling approach is used to calculate inner hysteresis trajectories in between the limiting surfaces. The developed model provides sufficient accuracy with low computational effort compared to finite element models. Thus, it is well suited for system design and optimization based on network models. This is demonstrated with exemplary models of MSM based actuators. System models and simulation results are shown and evaluated for different topologies.


Author(s):  
Horst Meier ◽  
Alexander Czechowicz

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide (lightweight-actuators, lower costs…etc.) these elements are only seldom integrated by engineers into mechatronical systems. The reason for this phenomenon is the insufficiently described dynamic behavior, especially at different boundary conditions. Also the lack of empirical data (like fatigue behavior and thermal balances) is a reason why development projects with shape memory actuators lead often to failures. Therefore a need of developing methods, standardized testings of empirical properties and computer aided actuator development systems is motivated. Based on an analysis of energy fluxes into and out of the actuator, a numerical model, implemented in MATLAB/SIMULINK is presented. The numerical model includes also a configuration and design tool which allows simulating different solutions to a problem. Additionally, this paper describes a development method for SMA which is fitted to uniqueness of these smart materials. In conclusion, this paper compares the conventional developing process to the presented method applying a mechatronical SMA-device.


1991 ◽  
Vol 246 ◽  
Author(s):  
L. McD. Schetky

AbstractAdaptive structures, also called Intelligent or smart materials, refers to the various materials systems which automatically or remotely alter their dynamic characteristics or their geometry to meet their Intended performance. By integrating the sensors and actuators Into the structural system, typically a composite materials, control of shape, vibration and acoustic behavior an be effected. In addition to active control, passive control of system damping can be achieved in these structures. The sensors employed include piezoelectric ceramics, piezoelectric polymer films, ferroelectrics, and fiber optics. For producing the stress induced changes in dynamic characteristics of a composite the actuators are either embedded within the composite or are surface mounted. In general, the piezoelectric type actuator Is used where small strains at high frequencies are appropriate, while shape memory actuators are used when high forces and strains at lower frequencies are required. Static damping, modulus shift effect on acoustic radiation, and strain energy shift of modal response and acoustic radiation of composite materials with embedded shape memory actuators will be discussed. The constitutive equations for shape memory alloys will be described and how these are used in the design of adaptive composite structuresThe term smart materials seems to have become a part of the engineering vocabulary with variants such as Intelligent materials, and their application in adaptive structures. Smart materials consist of a structural component such as a composite such as fiber reenforced resin, with distributed sensors and actuators and a microprocessor. In response to changing external or Internal conditions these materials can change their properties to more effectively perform their function. The external conditions may be environment such as light or heat, loads, vibration or the need to change the geometry or shape of the structure to cope with changing service conditions. Internal conditions may be delamination in a composite, fatigue cracks in a metallic or nonmetallic structure, or other forms of Incipient failure.In reviewing papers presented in the past several years at conferences on smart/adaptive structures one would see a dominant number on various aspects of space structures such as mirrors. antennas, robotics booms and satellite docking. In these areas the control of vibration or the precise control of motion are most often the specific subject addressed. Much of the ongoing research is on control theory and the design of algorithms to define the sensor-actuator-microprocessor Integration. Of concern in this paper Is the actuator itself which, in response to commands from the microprocessor, produces strains and forces in the structure to modify Its acoustic or vibratory response or alter Its shape. These actuators are broadly of two types: low to medium force, low strain, high frequency systems, typically a piezoceramic such as PZT, or a high force, high strain, low frequency actuator which is most likely to be a shape memory alloy element.


2015 ◽  
Vol 51 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Johannes Ziske ◽  
Fabian Ehle ◽  
Holger Neubert ◽  
Aaron D. Price ◽  
Jens Lienig

2015 ◽  
Vol 51 (12) ◽  
pp. 1-1
Author(s):  
Johannes Ziske ◽  
Fabian Ehle ◽  
Holger Neubert ◽  
Aaron D. Price ◽  
Jens Lienig

2014 ◽  
Vol 50 (2) ◽  
pp. 989-992 ◽  
Author(s):  
Thomas Schiepp ◽  
Manuel Maier ◽  
Emmanouel Pagounis ◽  
Andreas Schluter ◽  
Marku Laufenberg

2009 ◽  
Vol 152-153 ◽  
pp. 497-500
Author(s):  
Pnina Ari-Gur ◽  
Giora Kimmel ◽  
James W. Richardson ◽  
Ashfia Huq ◽  
Kapil Sharma

The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.


Sign in / Sign up

Export Citation Format

Share Document