Influence of integrated weed management on growth, productivity and economics of wheat (Triticum aestivum L.)

Crop Research ◽  
2018 ◽  
Vol 53 (5&6) ◽  
1994 ◽  
Vol 74 (1) ◽  
pp. 193-197 ◽  
Author(s):  
H. A. Loeppky ◽  
D. A. Derksen

Quackgrass [Elytrigia repens (L.) Nevski] is a widespread perennial weed traditionally controlled by tillage, a practice which can contribute to soil erosion and degradation. This study was initiated to determine the impact of integrated weed management strategies utilizing crop rotation, conservation tillage, and postemergence herbicides on quackgrass. Rotations of tall and semi-dwarf winter wheat (Triticum aestivum L. 'Norstar' and 'Norwin') or spring wheat (Triticum aestivum L. 'Katepwa' and 'HY320') with mustard (Brassica juncea 'Common Brown') and flax (Linum usitatissimum L. 'Norlin') were conducted at Indian Head, Saskatchewan for 4 yr to determine their effect on quackgrass shoot density, rhizome dry weight and rhizome node density. The presence or absence of winter wheat within the crop rotation had the greatest impact on quackgrass growth. During years when drought hampered winter wheat establishment, quackgrass growth was greater in winter wheat than in spring wheat, but under conditions favoring winter wheat establishment, the opposite occurred. Quackgrass growth in standard height wheat was similar to semi-dwarf wheat. Annual differences in quackgrass growth occurred between mustard and flax, but overall, no trend developed. Shoot density, rhizome biomass, and rhizome node density were not consistently correlated to crop yield. Crop rotation is a useful component of an integrated quackgrass management system. Key words: Integrated weed management (IWM), quackgrass, Elytrigia repens, crop rotation, conservation tillage


2018 ◽  
Vol 10 (4) ◽  
pp. 79 ◽  
Author(s):  
Abbes Tanji ◽  
Mohamed Boutfirass

Three on-farm weed control experiments were conducted in irrigated bread wheat in the Doukkala perimeter, Morocco, in 2015-16 and 2016-17 in order to study the efficacy of 4 pre-emergence herbicide treatments for controlling rigid ryegrass that is resistant to 13 post-emergence herbicides. Results showed that 3 pre-emergence herbicides [i) chlorotoluron, 2000 g/ha + isoxaben, 74.8 g/ha; ii) prosulfocarb, 4000 g/ha; iii) prosulfocarb, 2000 g/ha + s-metolachlor, 300 g/ha] reduced rigid ryegrass shoot biomass by > 90% 1 to 3 months after treatments (MAT). Pendimethalin (1320 g ha-1) achieved 83-99% rigid ryegrass control 1 to 3 MAT. The four herbicide treatments were safe on wheat in one experiment, but reduced wheat density in 2 other experiments due to heavy rain (about 100 mm) after herbicide treatments and before crop emergence. Grain yields in sprayed plots ranged from 6.6 to 9.8 t ha-1, 4.4 to 7.4 t ha-1, 7.3 to 8.9 t ha-1 in experiments 1 to 3, respectively. Straw yields were 11.4 to 15.4, 9.6 to 15.8, and 10.1 to 14.5 t ha-1 in the 3 experiments, respectively. These preemergence herbicides need to be used by wheat growers as part of an integrated weed management program. Further research is needed to explore ways to avoid wheat injury, that could be occasionally caused by heavy rain or irrigation, after preemergence herbicide application and before crop emergence.


2019 ◽  
Vol 7 (2) ◽  
pp. 11
Author(s):  
R P S Shaktawat ◽  
S P S Somvanshi ◽  
S S Bhadoria ◽  
H P Singh

2000 ◽  
Vol 80 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Allison Schoofs ◽  
Martin H. Entz

Alternatives to herbicides are needed for weed control. Field studies were conducted in 1994/1995 and 1995/1996 to investigate the nature of forage crop-weed dynamics and to test the effect of single year forage crops on the density and community composition of annual weeds in a following field pea (Pisium sativum L.) test crop. Five spring-seeded forage treatments were compared with wheat (Triticum aestivum L.) grain crops (with or without herbicides for grassy and broadleaved weeds): winter triticale (Triticosecale) (simulation grazed); spring triticale (silage); spring/winter triticale intercrop (silage, then simulation grazed); alfalfa (Medicago sativa L.) (hay); sorghum-sudangrass (Sorghum bicolor [L.] Moench × Sorghum sudanese [Piper]) (hay); and a weedy fallow (silage). A fall rye (Secale cereale L.) grain crop and a sweet clover (Melilotis officinalis L.)/winter triticale double crop (hay, then simulation grazing) were included in the 1995/1996 trial. All forage systems were at least as effective as the sprayed wheat control in suppressing wild oat (Avena fatua L.); however, effects on other weeds, especially broadleaved species, were variable. Biennial crops provided the best early season weed control, while long-season systems such winter triticale and the triticale intercrop provided the best late season weed control. Forages shifted the weed community composition away from wild oat and green foxtail (Setaria viridis L. Beauv.) to a similar or greater extent than herbicide-treated wheat. Forage systems that did not provide season-long crop competition tended to have more broadleaved weeds. Some forage systems increased pea grain yield the following year (relative to the sprayed wheat control); however, forages alone did not eliminate the need for herbicides in the pea crop. Annual forages may play an important role in integrated weed management, especially for wild oat, however further research to refine forage-based weed management systems is needed. Key words: Integrated weed management, alfalfa, intercropping, double cropping, organic farming


Sign in / Sign up

Export Citation Format

Share Document