rigid ryegrass
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 14)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
pp. 1-51
Author(s):  
Amit J. Jhala ◽  
Hugh J. Beckie ◽  
Carol Mallory-Smith ◽  
Marie Jasieniuk ◽  
Roberto Busi ◽  
...  

Abstract The objective of this paper was to review the reproductive biology, herbicide-resistant (HR) biotypes, pollen-mediated gene flow (PMGF), and potential for transfer of alleles from HR to susceptible grass weeds including barnyardgrass, creeping bentgrass, Italian ryegrass, johnsongrass, rigid (annual) ryegrass, and wild oats. The widespread occurrence of HR grass weeds is at least partly due to PMGF, particularly in obligate outcrossing species such as rigid ryegrass. Creeping bentgrass, a wind-pollinated turfgrass species, can efficiently disseminate herbicide resistance alleles via PMGF and movement of seeds and stolons. The genus Agrostis contains about 200 species, many of which are sexually compatible and produce naturally occurring hybrids as well as producing hybrids with species in the genus Polypogon. The self-incompatibility, extremely high outcrossing rate, and wind pollination in Italian ryegrass clearly point to PMGF as a major mechanism by which herbicide resistance alleles can spread across agricultural landscapes, resulting in abundant genetic variation within populations and low genetic differentiation among populations. Italian ryegrass can readily hybridize with perennial ryegrass and rigid ryegrass due to their similarity in chromosome numbers (2n=14), resulting in interspecific gene exchange. Johnsongrass, barnyardgrass, and wild oats are self-pollinated species, so the potential for PMGF is relatively low and limited to short distances; however, seeds can easily shatter upon maturity before crop harvest, leading to wider dispersal. The occurrence of PMGF in reviewed grass weed species, even at a low rate is greater than that of spontaneous mutations conferring herbicide resistance in weeds and thus can contribute to the spread of herbicide resistance alleles. This review indicates that the transfer of herbicide resistance alleles occurs under field conditions at varying levels depending on the grass weed species.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Populations of rigid ryegrass (Lolium rigidum Gaudin) from southern Australia have evolved resistance to the thiocarbamate herbicide prosulfocarb. The inheritance of prosulfocarb resistance was explored by crossing R and S individuals. In all families within each cross, except 16.2, the response of the F1 were intermediate between the parents, suggesting that resistance is inherited as a single, partially dominant trait. For 16.2, the response of the F1 was more similar to the susceptible parent, suggesting resistance may be a recessive trait in this population. Segregation at the discriminating dose of 1200 g a.i. ha−1 prosulfocarb in populations 375-14 fitted the ratio (15:1) consistent with two independent dominant alleles; 198-15 fitted a ratio (13:3) for two independent alleles, one dominant and one recessive; and EP162 fitted a ratio (9:7) for two additive dominant alleles. In contrast segregation of population 16.2 fitted a (7:9) ratio consistent with two independent recessive alleles contributing to prosulfocarb resistance. Four different patterns of resistance to prosulfocarb were identified in different resistant populations, with inheritance as a dominant allele, dominant and recessive, additive dominant and as an independent recessive allele. This suggests there are several different mechanisms of prosulfocarb resistance present in L. rigidum.


2021 ◽  
Vol 13 (12) ◽  
pp. 6648
Author(s):  
Barbara Kutasy ◽  
Zsolt Takács ◽  
Judit Kovács ◽  
Verëlindë Bogaj ◽  
Syafiq A. Razak ◽  
...  

Lolium rigidum Gaud. is a cross-pollinated species characterized by high genetic diversity and it was detected as one of the most herbicide resistance-prone weeds, globally. Acetohydroxyacid synthase (AHAS) resistant populations cause significant problems in cereal production; therefore, monitoring the development of AHAS resistance is widely recommended. Using next-generation sequencing (NGS), a de novo transcriptome sequencing dataset was presented to identify the complete open reading frame (ORF) of AHAS enzyme in L. rigidum and design markers to amplify fragments consisting of all of the eight resistance-conferring amino acid mutation sites. Pro197Thr, Pro197Ala, Pro197Ser, Pro197Gln, and Trp574Leu amino acid substitutions have been observed in samples. Although the Pro197Thr amino acid substitution was already described in SU and IMI resistant populations, this is the first report to reveal that the Pro197Thr in AHAS enzyme confers a high level of resistance (ED50 3.569) to pyroxsulam herbicide (Triazolopyrimidine).


Weed Science ◽  
2021 ◽  
pp. 1-30
Author(s):  
Michael Thompson ◽  
Gulshan Mahajan ◽  
Bhagirath S. Chauhan

Abstract Herbicide resistance is an increasing issue in many weed species, including rigid ryegrass (Lolium rigidum Gaudin); a major weed of winter cropping systems in southern Australia. Recently, this weed has also been found in summer crops in the south eastern region of Australia. Effective control of this herbicide resistant weed across south eastern Australia requires alternative management strategies. These strategies can be informed from analyses on the interaction of germinable seeds with their regional environment and by identifying the differences between populations of varying herbicide resistance levels. In this study, we explore how various environmental factors differentially affect the seed germination and seedling emergence of three L. rigidum populations, including one glyphosate-resistant population (GR), one glyphosate-susceptible population (GS) and one population of unknown resistance status (CC04). Germination was greater than 90% for all populations at each temperature regime except 15/5 C. Populations germinated at a lower rate under 15/5 C, ranging from 74 to 87%. Salt stress had a similar effect on the germination of all populations, with 0% germination occurring at 250 mM salt stress. Population GS had greater tolerance to osmotic stress with 65% germination at −0.4 MPa compared to 47% and 43% germination for CC04 and GR, respectively; however, germination was inhibited at −0.8 and −1.6 MPa for all populations. All populations had lower germination when placed in complete darkness as opposed to alternating light/dark. Germination in darkness was lower for CC04 (69%) than GR (83%) and GS (83%). Seedling emergence declined with increasing burial depth but retained 37% emergence at 8 cm when averaged over the populations. These results indicate that L. rigidum Gaud. can survive under a range of environmental variables and the extent of survival differs based on population, however, there was no difference based on herbicide resistance status.


Weed Science ◽  
2021 ◽  
pp. 1-6
Author(s):  
David J. Brunton ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Three resistant (R) rigid ryegrass (Lolium rigidum Gaudin) populations from southern Australia (EP162, 375-14, and 198-15) with cross-resistance to thiocarbamate, chloroacetamide, and sulfonylisoxazoline herbicides displayed reduced sensitivity to the isoxazolidinone herbicides bixlozone and clomazone. Each of these R populations was exposed to two cycles of recurrent selection (RS) in which plants were treated with the field rate of bixlozone, survivors were bulk crossed, and seed was collected. After the first cycle of recurrent selection (RS1), the LD50 to bixlozone in population 198-15 increased to 17.5-fold compared with the S population and increased further to 26.9-fold after a second cycle of recurrent selection (RS2). The recurrent selection process also increased the level of resistance to bixlozone in populations EP162 and 375-14 (7.8- to 18.4-fold) compared with the S population. Phorate antagonized bixlozone and clomazone in SLR4 (34.6- and 28.1-fold increase in LD50) and both herbicides in populations EP162 (36.5- to 46.6-fold), 375-14 (71.4- to 73.9-fold), and 198-15 (86.4- to 91.5-fold) compared with the absence of phorate. The increase in LD50 of all L. rigidum RS populations when treated with phorate suggests a lack of herbicide activation is not the likely resistance mechanism to these herbicides. This research highlights the elevated risk of thiocarbamate-resistant L. rigidum populations to rapidly evolve resistance to the isoxazolidinone herbicides bixlozone and clomazone.


2020 ◽  
pp. 1-22
Author(s):  
Michael J. Walsh ◽  
Annie E. Rayner ◽  
Annie Rutledge ◽  
John C. Broster

Abstract Chaff lining and chaff tramlining are harvest weed seed control (HWSC) systems that involve the concentration of weed seed containing chaff material into narrow (20 to 30 cm) rows between or on the harvester wheel tracks during harvest. These lines of chaff are left intact in the fields through subsequent cropping seasons in the assumption that the chaff environment is unfavourable for weed seed survival. The chaff row environment effect on weed seed survival was examined in field studies, while chaff response studies determined the influence of increasing amounts of chaff on weed seedling emergence. The objectives of these studies were to determine 1) the influence of chaff lines on the summer-autumn seed survival of selected weed species; and 2) the influence of chaff type and amount on rigid ryegrass seedling emergence. There was frequently no difference (P>0.05) in survival of seed of four weed species (rigid ryegrass, wild oat, annual sowthistle and turnip weed) when these seed were placed beneath or beside chaff lines. There was one instance where wild oat seed survival was increased (P<0.05) when seed were placed beneath compared to beside a chaff line. The pot studies determined that increasing amounts of chaff consistently resulted in decreasing numbers of rigid ryegrass seedlings emerging through chaff material. The suppression of emergence broadly followed a linear relationship where there was approximately a 2.0% reduction in emergence with every 1.0 t ha-1 increase in chaff material. This relationship was consistent across wheat, barley, canola and lupin chaff types, indicating that the physical presence of the chaff was more important than chaff type. These studies indicated that chaff lines may not affect the over summer-autumn survival of the contained weed seeds but the subsequent emergence of weed seedlings will be restricted by high amounts of chaff (>40 t ha-1).


Weed Science ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 426-433
Author(s):  
Catherine P. D. Borger ◽  
Gaus Azam ◽  
Chris Gazey ◽  
Andrew van Burgel ◽  
Craig A. Scanlan

AbstractEstimates indicate that 30% of land surface globally is affected by soil acidity, influencing agricultural production. Application of lime increases soil pH and improves crop growth. We tested the hypothesis that liming will reduce rigid ryegrass (Lolium rigidum Gaudin) growth by improving the competitive ability of the crop. Experiments at Merredin and Wongan Hills in Western Australia indicated that application of lime in previous years reduced L. rigidum density, biomass, and seed production in wheat (Triticum aestivum L.) crops in 2018. At Merredin, L. rigidum seed production in 2018 was reduced from 9,390 to 2,820 seeds m−2, and wheat tiller number and yield was increased, following lime application of 0 to 6,000 kg ha−1 in 2016. At Wongan Hills, lime application of 4,000 kg ha−1 in 1994 reduced seed production in the 2018 wheat crop from 4,708 to 1,610 seeds m−2, and application of 3,000 kg ha−1 of lime in 2014 reduced seed production from 3,959 to 921 seeds m−2 in 2018. Again, lime increased wheat tiller number, but not yield. A screen house experiment (in controlled conditions) indicated that lime application increased the initial growth of both L. rigidum and wheat seedlings. This supports the conclusion that reduced L. rigidum growth and seed production in the field resulted from increased competitive ability of the crop, rather than any direct and detrimental impact of lime on L. rigidum growth. Incorporation of lime reduced initial emergence of L. rigidum in controlled conditions, with L. rigidum seeds at a uniform depth, and in the field experiments in situations of high weed density, with seeds buried by the incorporation process. Nationally, the revenue loss from residual L. rigidum in crop is A$93 million per year. The current research confirms that application of lime will increase the competitive ability of crops growing in regions with acidic soils.


Weed Science ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 367-372
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

AbstractOrganophosphate insecticides, which have the capacity to inhibit specific herbicide-degrading (cytochrome P450) enzymes, have been used to explore metabolic herbicide-resistance mechanisms in weeds. This study investigates the response of seven field-selected rigid ryegrass (Lolium rigidum Gaudin) populations to herbicides from three different sites of action in the presence or absence of the P450 inhibitor phorate. Phorate antagonized the thiocarbamate herbicides triallate and prosulfocarb (8-fold increase in LD50) in multiple resistant L. rigidum populations with resistance to three different site-of-action herbicides. In contrast, phorate synergized trifluralin and propyzamide in some populations, reducing the LD50 by 50%. Conversely, treatment with phorate had no significant effect on the LD50 for S-metolachlor or pyroxasulfone (inhibitors of very-long-chain fatty-acid synthesis). Phorate has diverse effects that are herbicide and population dependant in field-selected L. rigidum, suggesting P450 involvement in the metabolism of trifluralin and failure to activate thiocarbamate herbicides in these populations. This research highlights the need for implementation of diverse approaches other than herbicide alone as part of a long-term integrated strategy to reduce the likelihood of metabolism-based resistance to PPI herbicides in L. rigidum.


2019 ◽  
Vol 157 (9-10) ◽  
pp. 676-683 ◽  
Author(s):  
Messaad Khammassi ◽  
Haifa Hajri ◽  
Yosra Menchari ◽  
Hanane Chaabane ◽  
Touraya Souissi

AbstractA survey of the prevalence of rigid ryegrass (Lolium rigidum) resistant to ACCase and ALS herbicides was conducted in major-cereal growing regions in the north of Tunisia. Randomly collected ryegrass populations were assessed, using the Syngenta RISQ® test, for resistance to clodinafop-propargyl, iodosulphuron + mesosulphuron and pinoxaden. Of the 177 tested populations, 58% exhibited resistance to clodinafop-propargyl and 52% to iodosulphuron + mesosulphuron, with 40% exhibiting resistance to both herbicides. Significant variations in the frequencies of rigid ryegrass resistant to clodinafop-propargyl and/or iodosulphuron + mesosulphuron were observed between surveyed regions which may be the result of differences in the history of herbicide use. Over 50% of resistant populations contained 60% of resistant plants or more, indicating the extent of resistance evolution in these regions. Our study demonstrates that the extent of resistance to ACCase and ALS-inhibiting herbicides in rigid ryegrass is widespread in major cereal-growing regions of Tunisia. Therefore, weed management must be focused on reducing the frequency of herbicide application, using multiple herbicide mechanisms of action, rotating different modes of action and integrating alternative control options.


Weed Science ◽  
2019 ◽  
pp. 1-10 ◽  
Author(s):  
Paula Lorenzo ◽  
Jonatan Reboredo-Durán ◽  
Luís Muñoz ◽  
Helena Freitas ◽  
Luís González

Abstract Plants that release molecules affecting other plants are a source of potential bioherbicides. Silver wattle (Acacia dealbata Link), considered invasive worldwide, was found to be phytotoxic to various other plant species. Combining the search for alternative bioherbicides while reducing the spread of this invader by preventing seed formation is a good potential strategy to solve both agricultural and environmental problems. This study aimed to identify nonvolatile compounds from A. dealbata flowers and explore their phytotoxicity on the germination process and seedling and plant growth of lettuce (Lactuca sativa L.), wheat (Triticum aestivum L.), and rigid ryegrass (Lolium rigidum Gaudin). We identified methyl cinnamate and methyl anisate as potential phytotoxins in the extracts, but we used pure commercial molecules to conduct bioassays. Methyl cinnamate showed higher phytotoxicity than methyl anisate and was selected for further bioassays. Methyl cinnamate reduced guaiacol peroxidase activity by 57% and 85% in L. rigidum and lettuce, respectively, and α-amylase by 6% in L. rigidum. This compound also inhibited early stem and radicle growth of dicotyledonous lettuce (60% and 89%, respectively) and monocotyledonous L. rigidum (76% and 87%, respectively), both species having small seeds. However, wheat with a larger seed size was not affected by the phytotoxin. The results obtained indicate a potential bioherbicidal effect for methyl cinnamate, and its application might be useful in wheat crops infested by L. rigidum. We suggest that collecting A. dealbata flowers would prevent Acacia seed formation and thus play a role in invasive pest management, as well as serving as a source of potential herbicides to other species.


Sign in / Sign up

Export Citation Format

Share Document