scholarly journals Changes in the paleohydrological conditions in the Laptev Sea during the late Pleistocene and Holocene based on a study of aquatic palynomorphs

2019 ◽  
Vol 59 (3) ◽  
pp. 433-448
Author(s):  
T. S. Klyuvitkina ◽  
Ye. I. Polyakova

On the basis of aquatic palynomorph assemblages in sediment cores obtained from the eastern Laptev Sea shelf, major phases of environmental change associated with the last postglacial global sea-level rise can be recognized for the time since 17.5 calendar years BP (cal. ka). It is shown that in the time interval of 17.5–13.0 cal. ka in the western part of the sea there was a very cold-water sea basin with permanent sea-ice cover, 12.3–11.2 cal. ka the outer shelf were characterized by increased precipitation of river-loaded matter in a river-proximal environment of Anabara and Khatanga rivers, and the period of 11.2–7.0 cal ka was marked by enhanced influence of Atlantic water at the Laptev Sea continental margin. Modern-like environments were established in this part of the sea approximately 7.0 cal. ka.

2012 ◽  
Vol 25 (16) ◽  
pp. 5556-5565 ◽  
Author(s):  
Igor A. Dmitrenko ◽  
Sergey A. Kirillov ◽  
Vladimir V. Ivanov ◽  
Bert Rudels ◽  
Nuno Serra ◽  
...  

Abstract Historical hydrographic data (1940s–2010) show a distinct cross-slope difference of the lower halocline water (LHW) over the Laptev Sea continental margins. Over the slope, the LHW is on average warmer and saltier by 0.2°C and 0.5 psu, respectively, relative to the off-slope LHW. The LHW temperature time series constructed from the on-slope historical records are related to the temperature of the Atlantic Water (AW) boundary current transporting warm water from the North Atlantic Ocean. In contrast, the on-slope LHW salinity is linked to the sea ice and wind forcing over the potential upstream source region in the Barents and northern Kara Seas, as also indicated by hydrodynamic model results. Over the Laptev Sea continental margin, saltier LHW favors weaker salinity stratification that, in turn, contributes to enhanced vertical mixing with underlying AW.


arktos ◽  
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Volker Klemann ◽  
Birgit Heim ◽  
Henning A. Bauch ◽  
Sebastian Wetterich ◽  
Thomas Opel

2012 ◽  
Vol 42 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Igor V. Polyakov ◽  
Andrey V. Pnyushkov ◽  
Robert Rember ◽  
Vladimir V. Ivanov ◽  
Y.-D. Lenn ◽  
...  

Abstract A yearlong time series from mooring-based high-resolution profiles of water temperature and salinity from the Laptev Sea slope (2003–04; 2686-m depth; 78°26′N, 125°37′E) shows six remarkably persistent staircase layers in the depth range of ~140–350 m encompassing the upper Atlantic Water (AW) and lower halocline. Despite frequent displacement of isopycnal surfaces by internal waves and eddies and two strong AW warming pulses that passed through the mooring location in February and late August 2004, the layers preserved their properties. Using laboratory-derived flux laws for diffusive convection, the authors estimate the time-averaged diapycnal heat fluxes across the four shallower layers overlying the AW core to be ~8 W m−2. Temporal variability of these fluxes is strong, with standard deviations of ~3–7 W m−2. These fluxes provide a means for effective transfer of AW heat upward over more than a 100-m depth range toward the upper halocline. These findings suggest that double diffusion is an important mechanism influencing the oceanic heat fluxes that help determine the state of Arctic sea ice.


2010 ◽  
Vol 30 (1) ◽  
pp. 5858 ◽  
Author(s):  
Dorothea Bauch ◽  
Matthias Gröger ◽  
Igor Dmitrenko ◽  
Jens Hölemann ◽  
Sergey Kirillov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document