Lipid Rafts and Amyloid Metabolism: Role in Pathogenesis of Alzheimer’s Disease

Author(s):  
N. N. Nalivaeva ◽  
A. J. Turner
2006 ◽  
Vol 23 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Joanna M. Cordy ◽  
Joanna M. Cordy ◽  
Nigel M. Hooper ◽  
Anthony J. Turner

2006 ◽  
Vol 1089 (1) ◽  
pp. 324-342 ◽  
Author(s):  
H. XU ◽  
R. WANG ◽  
Y.-W. ZHANG ◽  
X. ZHANG

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katsumi Matsuzaki

It is widely accepted that the conversion of the soluble, nontoxic amyloidβ-protein (Aβ) monomer to aggregated toxic Aβrich inβ-sheet structures is central to the development of Alzheimer’s disease. However, the mechanism of the abnormal aggregation of Aβin vivo is not well understood. Accumulating evidence suggests that lipid rafts (microdomains) in membranes mainly composed of sphingolipids (gangliosides and sphingomyelin) and cholesterol play a pivotal role in this process. This paper summarizes the molecular mechanisms by which Aβaggregates on membranes containing ganglioside clusters, forming amyloid fibrils. Notably, the toxicity and physicochemical properties of the fibrils are different from those of Aβamyloids formed in solution. Furthermore, differences between Aβ-(1–40) and Aβ-(1–42) in membrane interaction and amyloidogenesis are also emphasized.


2021 ◽  
Vol 22 (22) ◽  
pp. 12181
Author(s):  
Guido Santos ◽  
Mario Díaz

Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.


2013 ◽  
Vol 10 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Elisa Evangelisti ◽  
Daniel Wright ◽  
Mariagioia Zampagni ◽  
Roberta Cascella ◽  
Claudia Fiorillo ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-56 ◽  
Author(s):  
Wayne Chadwick ◽  
Randall Brenneman ◽  
Bronwen Martin ◽  
Stuart Maudsley

Various animal models of Alzheimer's disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. We have used mass analytical techniques and multiple bioinformatic approaches to better appreciate the intricate interactions of these multifunctional proteins in the 3xTgAD murine model of AD. Our results show that there are significant alterations in numerous receptor/cell signaling proteins in cortical lipid rafts isolated from 3xTgAD mice.


Sign in / Sign up

Export Citation Format

Share Document