scholarly journals Potential for stratigraphie folding near ice-sheet centers

2001 ◽  
Vol 47 (159) ◽  
pp. 639-648 ◽  
Author(s):  
Edwin D. Waddington ◽  
John F. Bolzan ◽  
Richard B. Alley

AbstractLack of agreement between the deep portions of the Greenland Icecore Project (GRIP) and Greenland Ice Sheet Project II (GISP2) ice cores from central Greenland suggests that folds may disrupt annual layering, even near ice divides. We use a simple kinematic flow model to delineate regions where slope disturbances (“wrinkles”) introduced into the layering could overturn into recumbent folds, and where they would flatten, leaving the stratigraphic record intact. Wrinkles are likely to originate from flow disturbances caused internally by inhomogeneities and anisotropy in the ice rheological properties, rather than from residual surface structures (sastrugi), or from open folds associated with transient flow over bed topography. If wrinkles are preferentially created in anisotropic ice under divides, where the resolved shear stress in the easy-glide direction can be weak and variable, then the deep intact climate record at Dye 3 may result from its greater distance from the divide. Alternatively, the larger simple shear at Dye 3 may rapidly overturn wrinkles, so that they are not recognizable as folds. The ice-core record from Siple Dome may be intact over a greater fraction of its depth compared to the central Greenland records if its flat bedrock precludes fluctuations in the stress orientation near the divide.

2016 ◽  
Vol 63 (237) ◽  
pp. 22-38 ◽  
Author(s):  
ANDREAS BORN

ABSTRACTThe full history of ice sheet and climate interactions is recorded in the vertical profiles of geochemical tracers in polar ice sheets. Numerical simulations of these archives promise great advances both in the interpretation of these reconstructions and the validation of the models themselves. However, fundamental mathematical shortcomings of existing models subject tracers to spurious diffusion, thwarting straightforward solutions. Here, I propose a new vertical discretization for ice-sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world flow of ice as a thinning of underlying layers. A new layer is added to the surface at equidistant time intervals, isochronally, thus identifying each layer uniquely by its time of deposition and age. This new approach is implemented for a two-dimensional section through the summit of the Greenland ice sheet. The ability to directly compare simulations of vertical ice cores with reconstructed data is used to find optimal model parameters from a large ensemble of simulations. It is shown that because this tuning method uses information from all times included in the ice core, it constrains ice-sheet sensitivity more robustly than a realistic reproduction of the modern ice-sheet surface.


2021 ◽  
Author(s):  
Helle Astrid Kjær ◽  
Margaret Harlan ◽  
Paul Vallelonga ◽  
Anders Svensson ◽  
Thomas Blunier ◽  
...  

<div><span><span>The Dye-3 ice core was drilled to bedrock at the Southern part of the central Greenland ice sheet (65°11'N, 43°50'W) in 1979-1981. The southern location is characterized by high accumulation rates compared to more central locations of the ice sheet. Since its drilling, numerous analyses of the core have been performed, and the ice has since been in freezer storage both in the USA and in Denmark.</span></span></div><div><span>In October and November 2019, the remaining ice, two mostly complete sections covering the depths of 1753–1820m and 1865–1918m of the Dye-3 core, were melted during a continuous flow analysis (CFA) campaign at the Physics of Ice, Climate, and Earth (PICE) group at the University of Copenhagen. The data represents both Holocene, Younger Dryas and Glacial sections (GS 5 to 12).</span></div><div> </div><div><span><span>The measured data consist chemistry and impurities contained in the ice, isotopes, as well as analysis of methane and other atmospheric gases. </span></span></div><div><span><span>The chemistry measurements include NH</span></span><span><span><sub>4</sub></span></span><span><span><sup>+</sup></span></span><span><span>, Ca</span></span><span><span><sup>2+</sup></span></span><span><span>, and Na</span></span><span><span><sup>+</sup></span></span><span><span> ions, which besides being influenced by transport, provide information about forest fires, wind-blown dust, and sea ice, respectively, as well as acidity, which aids in the identification of volcanic events contained in the core. The quantity and grain size distribution of insoluble particles was analyzed by means of an Abakus laser particle counter.</span></span></div><div> </div><div><span>We compare the new high-resolution CFA record of dye3 with previous analysis and thus evaluate the progress made over 40 years. Further we compare overlapping time periods with other central Greenland ice cores and discuss spatial patterns in relation to the presented climate proxies.</span></div>


2013 ◽  
Vol 54 (64) ◽  
pp. 44-50 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Dorthe Dahl-Jensen ◽  
S. Prasad Gogineni ◽  
John D. Paden

Abstract Radio-echo sounding surveys over the Greenland ice sheet show clear, extensive internal layering, and comparisons with age–depth scales from deep ice cores allow for dating of the layering along the ice divide. We present one of the first attempts to extend the dated layers beyond the ice core drill sites by locating the depth of the Bølling–Allerød transition in >400 flight-lines using an automated fitting method. Results show that the transition is located in the upper one-third of the ice column in the central part of North Greenland, while the transition lowers towards the margin. This pattern mirrors the present surface accumulation, and also indicates that a substantial amount of pre-Holocene ice must be present in central North Greenland.


2013 ◽  
Vol 753 ◽  
pp. 481-484 ◽  
Author(s):  
Tobias Binder ◽  
Ilka Weikusat ◽  
Johannes Freitag ◽  
Christoph S. Garbe ◽  
Dietmar Wagenbach ◽  
...  

Ice cores through an ice sheet can be regarded as a sample of a unique natural deformation experiment lasting up to a million years. Compared to other geological materials forming the earth‘s crust, the microstructure is directly accessible over the full depth. Controlled sublimation etching of polished ice sections reveals pores, air bubbles, grain boundaries and sub-grain boundaries at the surface. The microstructural features emanating at the surface are scanned. A dedicated method of digital image processing has been developed to extract and characterize the grain boundary networks. First preliminary results obtained from an ice core drilled through the Greenland ice sheet are presented. We discuss the role of small grains in grain size analysis and derive from the shape of grain boundaries the acting driving forces for grain boundary migration.


2004 ◽  
Vol 50 (170) ◽  
pp. 453-461 ◽  
Author(s):  
Kendrick C. Taylor ◽  
Richard B. Alley ◽  
Debra A. Meese ◽  
Matthew K. Spencer ◽  
Ed J. Brook ◽  
...  

AbstractThe Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core. The data were interpreted manually and with a computer algorithm. The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, 10Be stratigraphic ties to the dendrochronology 14 C record and the dated volcanic stratigraphy. The algorithm interpretation is more consistent and better quantified than the tedious and subjective manual interpretation.


2013 ◽  
Vol 80 (3) ◽  
pp. 562-574 ◽  
Author(s):  
Nicole E. Spaulding ◽  
John A. Higgins ◽  
Andrei V. Kurbatov ◽  
Michael L. Bender ◽  
Steven A. Arcone ◽  
...  

Terrestrial meteorite ages indicate that some ice at the Allan Hills blue ice area (AH BIA) may be as old as 2.2 Ma. As such, ice from the AH BIA could potentially be used to extend the ice core record of paleoclimate beyond 800 ka. We collected samples from 5 to 10 cm depth along a 5 km transect through the main icefield and drilled a 225 m ice core (S27) at the midpoint of the transect to develop the climate archive of the AH BIA. Stable water isotope measurements (δD) of the surface chips and of ice core S27 yield comparable signals, indicating that the climate record has not been significantly altered in the surface ice. Measurements of 40Aratm and δ18Oatm taken from ice core S27 and eight additional shallow ice cores constrain the age of the ice to approximately 90–250 ka. Our findings provide a framework around which future investigations of potentially older ice in the AH BIA could be based.


2007 ◽  
Vol 53 (183) ◽  
pp. 585-596 ◽  
Author(s):  
Anthony J. Gow ◽  
Debra A. Meese

Approximately 300 volcanic ash and dust layers were observed in the Siple Dome (Antarctica) ice core. Most of this tephra, deposited between 700 and 800 m depth, consisted primarily of glass shards with varying amounts of crystalline material and groundmass fragments. The pattern of distribution of tephra fallout closely replicates that found in the Byrd ice core, indicative of contemporaneous deposition at both locations. Peak fallout occurred approximately 19 500 years ago, based on methane tie points in the Siple Dome and Greenland Ice Sheet Project 2 (GISP2) ice cores. Mount Berlin was identified as a potential source of tephra, although other volcanoes in West and East Antarctica appear to have contributed ash and dust. Ice between 697 and 730 m, in which fine-grained tephra is concentrated, has undergone enhanced thinning compared to ice with a similar concentration of tephra deposited contemporaneously between 1300 and 1540 m at Byrd. It is speculated that this thinning has occurred in response to dynamic interaction between ice at Siple Dome and the two ice streams flanking it. A dramatic change to a shear fabric appears to be directly related to the higher concentration of volcanic particles in the ice between 700 and 800 m.


1998 ◽  
Vol 27 ◽  
pp. 360-364 ◽  
Author(s):  
Martin J. Siegert ◽  
Richard Hodgkinst ◽  
Julian A. Dowdeswell

Antarctic radio-echo sounding (RES) data at 60 MHz have been used to determine an independent stratigraphy for the ice core at Vostok station, based on internal radio-echo layering. A-scope RES data allow the amplitude of reflected electromagnetic (e/m) waves to be measured and, by accounting fur geometric spreading and absorption losses of the e/m wave, power reflection coefficients (PRCs) to be calculated. This information is compared with time-continuous Z-scope RES data in order to trace continuous e/m reflectors across the ice sheet. Internal ice-sheet horizons deeper than 800 m are caused by layers of ice that possess distinctly different dielectric properties (i.e. acidic layers) compared with ice above and/or below. Comparison of four PRC samples, located ~ 5 km from Vostok station, revealed five distinct internal reflections between 1000 and 2200 m. Z-scope data from directly over the Vostok station site show the same five prominent internal radio-echo layers. The depth-related radio-echo signals were then compared with chemical records from the Vostok ice core, including the H2SO4 signal, a major component of which is derived from volcanic events. From this procedure, internal radio-echo reflectors and Vostok ice-core acid measurements were correlated. Avery good match was made between Z-scope and ice-core data. However, vertical offsets observed between A-scope-derived RES layers and peaks in the chemical signal of up to 100 m are probably due to the general Inkling of the ice-sheet layering between the core site and the RES flight-line. We conclude that 60 MHz RES layering may be regarded as a stratigraphy independent of palaeoclimate, and may be used to correlate other deep Southern Hemisphere ice cores.


2020 ◽  
Author(s):  
Irene Malmierca-Vallet ◽  
Louise C. Sime ◽  
Paul J. Valdes ◽  
Julia C. Tindall

Abstract. Changes in the Greenland ice sheet (GIS) affect global sea level. Greenland stable water isotope (δ18O) records from ice cores offer information on past changes in the surface of the GIS. Here, we use the isotope-enabled HadCM3 climate model to simulate a set of Last Interglacial (LIG) idealised GIS surface elevation change scenarios focusing on GIS ice core sites. We investigate how δ18O depends on the magnitude and sign of GIS elevation change and evaluate how the response is altered by sea ice changes. We find that modifying GIS elevation induces changes in Northern Hemisphere atmospheric circulation, sea ice and precipitation patterns. These climate feedbacks lead to ice core-averaged isotopic lapse rates of 0.49 ‰ per 100 m for the lowered GIS states and 0.29 ‰ per 100 m for the enlarged GIS states. This is lower than the spatially derived Greenland lapse rates of 0.62–0.72 ‰ per 100 m. These results thus suggest non-linearities in the isotope-elevation relationship, and have consequences for the interpretation of past elevation and climate changes across Greenland. In particular, our results suggest that winter sea ice changes may significantly influence isotopic-elevation gradients: winter sea ice effect can decrease (increase) modelled core-averaged isotopic lapse rate values by about -19 % (and +28 %) for the lowered (enlarged) GIS states respectively. The largest influence of sea ice on δ18O changes is found in coastal regions like the Camp Century site.


2002 ◽  
Vol 35 ◽  
pp. 136-144 ◽  
Author(s):  
Niels Reeh ◽  
Hans Oerter ◽  
Henrik Højmark Thomsen

AbstractOld ice for palaeoenvironmental studies retrieved by deep core drilling in the central regions of the large ice sheets can also be retrieved from the ice-sheet margins. the δ18O content of the surface ice was studied at 15 different Greenland ice-margin locations. At some locations, two or more records were obtained along closely spaced parallel sampling profiles, showing good reproducibility of the records. We present ice-margin δ18O records reaching back to the Pleistocene. Many of the characteristic δ18O variations known from Greenland deep ice cores can be recognized, allowing an approximate time-scale to be established along the ice-margin records. A flowline model is used to determine the location on the ice sheet where the margin ice was originally deposited as snow. the Pleistocene–Holocene δ18O change at the deposition sites is determined by comparing the δ18O values in the ice-margin record to the present δ18O values of the surface snow at the deposition sites. on the northern slope of the Greenland ice sheet, the Pleistocene–Holocene δ18O change is about 10‰ in contrast to a change of 6–7‰ at locations near the central ice divide. This is in accordance with deep ice-core results. We conclude that δ18O records measured on ice from the Greenland ice-sheet margin provide useful information about past climate and dynamics of the ice sheet, and thus are important (and cheap) supplements to deep ice-core records.


Sign in / Sign up

Export Citation Format

Share Document