scholarly journals Mechanical and structural properties of weak snow layers measured in situ

1998 ◽  
Vol 26 ◽  
pp. 1-6 ◽  
Author(s):  
Paul M. B. Föhn ◽  
Christian Camponovo ◽  
Georges Krüsi

Weak layers such as buried surface hoar or depth hoar frequently form the failure plane of slab avalanches. Therefore, the mechanical properties of such layers in relation to their snow structure have been investigated. Since it is difficult to transport samples containing a weak layer into cold rooms, the mechanical measurements have to be made in situ.We investigate strain-rate dependency of shear strength by measuring concurrently strength, deformation and acceleration, using a digital force gauge attached to a 0.05 m2 shear frame to which an accelerometer and a displacement sensor are fixed. In doing so, a dynamic force comparable to a driving skier is applied. The measurements cover a strain-rate range 10-2 to 1 s-1. The samples fail in a brittle manner. The shear-strength values cover the range 0.2–2.8 kPa. The dataset is also used to approximate the coefficient G, the shear modulus, for different weak layers.The snow structure has been analysed macroscopically in the field and for some layers representative snow samples have been extracted in order to prepare, in the cold laboratory, single-sided serial planes with cuts every 0.1 mm recorded by video. The analysis of these snow samples should have given the relation between some mechanical properties (strength, strain) and the structural properties. Due to basic problems in defining the connection between complex snow grains (e.g. surface hoar), we were unable to complete this part in due time. Only preliminary results on this aspect are presented here. Based on our long-term database, containing macroscopic structural and strength data of weak layers, a relationship between snow type and shear strength has been established.

1998 ◽  
Vol 26 ◽  
pp. 1-6 ◽  
Author(s):  
Paul M. B. Föhn ◽  
Christian Camponovo ◽  
Georges Krüsi

Weak layers such as buried surface hoar or depth hoar frequently form the failure plane of slab avalanches. Therefore, the mechanical properties of such layers in relation to their snow structure have been investigated. Since it is difficult to transport samples containing a weak layer into cold rooms, the mechanical measurements have to be made in situ. We investigate strain-rate dependency of shear strength by measuring concurrently strength, deformation and acceleration, using a digital force gauge attached to a 0.05 m2 shear frame to which an accelerometer and a displacement sensor are fixed. In doing so, a dynamic force comparable to a driving skier is applied. The measurements cover a strain-rate range 10-2 to 1 s-1. The samples fail in a brittle manner. The shear-strength values cover the range 0.2–2.8 kPa. The dataset is also used to approximate the coefficient G, the shear modulus, for different weak layers. The snow structure has been analysed macroscopically in the field and for some layers representative snow samples have been extracted in order to prepare, in the cold laboratory, single-sided serial planes with cuts every 0.1 mm recorded by video. The analysis of these snow samples should have given the relation between some mechanical properties (strength, strain) and the structural properties. Due to basic problems in defining the connection between complex snow grains (e.g. surface hoar), we were unable to complete this part in due time. Only preliminary results on this aspect are presented here. Based on our long-term database, containing macroscopic structural and strength data of weak layers, a relationship between snow type and shear strength has been established.


2010 ◽  
Vol 97-101 ◽  
pp. 814-817 ◽  
Author(s):  
Jun Deng

One of the greatest drawbacks to predicting the behaviour of bonded joints has been the lack of reliable data on the mechanical properties of adhesives. In this study, methods for determining mechanical properties of structural adhesive were discussed. The Young’s modulus, Poisson’s ratio and tensile strength of the adhesive were tested by dogbone specimens (bulk form) and butt joint specimens (in situ form). The shear modulus and shear strength were test by V-notched specimens (bulk form) and thick adherend lap-shear (TALS) joint specimens (in situ form). The test results show that the elastic modulus provided by the manufacturer is too low, the dogbone specimen is better than the butt joint specimen to test the tensile strength and elastic modulus and the TALS joint specimen is better than the V-notched specimen to test the shear strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Abdullah A. Al-Juaid ◽  
Ramzi Othman

The main focus of this paper is in evaluating four constitutive relations which model the strain rate dependency of polymers yield stress. Namely, the two-term power-law, the Ree-Eyring, the cooperative, and the newly modified-Eyring equations are used to fit tensile and compression yield stresses of polycarbonate, which are obtained from the literature. The four equations give good agreement with the experimental data. Despite using only three material constants, the modified-Eyring equation, which considers a strain rate-dependent activation volume, gives slightly worse fit than the three other equations. The two-term power-law and the cooperative equation predict a progressive increase in the strain rate sensitivity of the yield stress. Oppositely, the Ree-Eyring and the modified-Eyring equations show a clear transition between the low and high strain rate ranges. Namely, they predict a linear dependency of the yield stress in terms of the strain rate at the low strain rate range. Crossing a threshold strain rate, the yield stress sensitivity sharply increases as the strain rate increases. Hence, two different behaviors were observed though the four equations fit well the experimental data. More experimental data, mainly at the intermediate strain rate range, are needed to conclude which, of the two behaviors, is more appropriate for polymers.


2018 ◽  
Vol 174 ◽  
pp. 02018
Author(s):  
Anatoliy Bragov ◽  
Andrey Lomunov ◽  
Alexander Konstantinov ◽  
Dmitriy Lamzin ◽  
Leopold Kruszka

The results of experimental study of mechanical properties of samples of lime-sand brick under dynamic loading are presented. The tests were carried out using the traditional Kolsky method and its modification - dynamic splitting (the so-called «Brazilian test»). The laws of change in strength, strain, time properties and energy intensity of the investigated material are established in the strain rate range of 5·102-2.5·103 s-1 under compression and in the stress rate range of 2·101-3·102 GPa/s under tension.


Author(s):  
Feng Yu ◽  
Yongchen Song ◽  
Weiguo Liu ◽  
Yanghui Li ◽  
Jiafei Zhao

The production of methane from hydrate reservoir may induce deformation of the hydrate-bearing strata. The research on mechanical properties of methane hydrate and establishing an efficient methane exploitation technology appear very important. In this paper, a low-temperature high-pressure triaxial test system including pressure crystal device (sample preparation system) was developed. A series of triaxial shear tests were carried out on artificial methane hydrate samples. The mechanical behavior was analyzed. The preliminary results show that the shear strength of methane hydrate increases with the increase of confining pressure and strain rate. While it increases with the decrease of temperature. Moreover, the secant modulus increases with the enhancement of strain rate and the decrease of confining pressure.


Author(s):  
Leila Ladani ◽  
Jafar Razmi ◽  
Soud Farhan Choudhury

Anisotropic mechanical behavior is an inherent characteristic of parts produced using additive manufacturing (AM) techniques in which parts are built layer by layer. It is expected that in-plane and out-of-plane properties be different in these parts. E-beam fabrication is not an exception to this. It is, however, desirable to keep this degree of anisotropy to a minimum level and be able to produce parts with comparable mechanical strength in both in-plane and out-of-plane directions. In this manuscript, this degree of anisotropy is investigated for Ti6Al4V parts produced using this technique through tensile testing of parts built in different orientations. Mechanical characteristics such as Young's modulus, yield strength (YS), ultimate tensile strength (UTS), and ductility are evaluated. The strain rate effect on mechanical behavior, namely, strength and ductility, is also investigated by testing the material at a range of strain rates from 10−2 to 10−4 s−1. Local mechanical properties were extracted using nanoindentation technique and compared against global values (average values obtained by tensile tests). Although the properties obtained in this experiment were comparable with literature findings, test results showed that in-plane properties, elastic modulus, YS, and UTS are significantly higher than out-of-plane properties. This could be an indication of defects in between layers or imperfect bonding of the layers. Strong positive strain rate sensitivity was observed in out-of-plane direction. The strain rate sensitivity evaluation did not show strain rate dependency for in-plane directions. Local mechanical properties obtained through nanoindentation confirmed the findings of tensile test and also showed variation of properties caused by geometry.


Author(s):  
Quang-Bang Tao ◽  
Lahouari Benabou ◽  
Laurent Vivet ◽  
Ky-Lim Tan ◽  
Jean-Michel Morelle ◽  
...  

This paper makes a focus on the design of a micro-testing machine used for evaluating the mechanical properties of solder alloys. The different parts of the testing device have been developed and assembled in a manner that will facilitate the study of miniature solder joints as used in electronic packaging. A specific procedure for fabricating miniature lap-shear joint specimens is proposed in this work. The tests carried out with the newly developed machine serve to determine the material behavior of solder joints under different controlled loading and temperature conditions. Two new solder alloys, namely SACBiNi and Innolot, are characterized in the study, showing the influence of strain rate and temperature parameters on their respective mechanical responses. In addition, the as-cast and fracture surfaces of the solder joints are observed with a scanning electron microscope to reveal the degradation mechanisms. The SACBiNi solder alloy, which contains less Ni and Sb elements, is found to have smaller shear strength than the Innolot alloy, while its elongation to rupture is significantly improved at the same strain rate level and testing temperature. The highest shear strength is 58.9 MPa and 61.1 MPa under the shear strain rate of 2.0 × 10−2 s−1 and room temperature for the SACBiNi and Innolot solder joints, respectively. In contrast, the lowest shear strength values, 26.6 MPa and 29.5 MPa for SACBiNi and Innolot, respectively, were recorded for the strain rate value of 2.0 × 10−4 s−1 and at temperature of 125℃.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heng Li ◽  
Jinming Li ◽  
Shengbo Yu ◽  
Chengwei Wu ◽  
Wei Zhang

AbstractArticular cartilage in knee joint can be anatomically divided into different regions: medial and lateral condyles of femur; patellar groove of femur; medial and lateral plateaus of tibia covered or uncovered by meniscus. The stress–strain curves of cartilage in uniaxially unconfined compression demonstrate strain rate dependency and exhibit distinct topographical variation among these seven regions. The femoral cartilage is stiffer than the tibial cartilage, and the cartilage in femoral groove is stiffest in the knee joint. Compared with the uncovered area, the area covered with meniscus shows the stiffer properties. To investigate the origin of differences in macroscopic mechanical properties, histological analysis of cartilage in seven regions are conducted. The differences are discussed in terms of the cartilage structure, composition content and distribution. Furthermore, the commonly used constitutive models for biological tissues, namely Fung, Ogden and Gent models, are employed to fit the experimental data, and Fung and Ogden models are found to be qualified in representing the stiffening effect of strain rate.


Sign in / Sign up

Export Citation Format

Share Document