scholarly journals Tidewater calving

1996 ◽  
Vol 42 (141) ◽  
pp. 375-385 ◽  
Author(s):  
С.J. Van Der Veen

AbstractData from Columbia Glacier are used to identify processes that control calving from a temperate tidewater glacier and to re-evaluate models that have been proposed to describe iceberg calving. Since 1981, Columbia Glacier has been retreating rapidly, with an almost seven-fold increase in calving rate from the mid-1970s to 1993. At the same time, the speed of the glacier increased almost as much, so that the actual rate of retreat increased more slowly. According to the commonly accepted model, the calving rate is linearly related to the water depth at the terminus, with retreat of the glacier snout into deeper water, leading to larger calving rates and accelerated retreat. The Columbia Glacier data show that the calving rate is not simply linked to observed quantities such as water depth or stretching rate near the terminus. During the retreat, the thickness at the terminus appears to be linearly correlated with the water depth; at the terminus, the thickness in excess of flotation remained at about 50 m. This suggests that retreat may be initiated when the terminal thickness becomes too small, with the rate of retreat controlled by the rate at which the snout is thinning and by the basal slope. The implication is that the rapid retreat of Columbia Glacier (and other comparable tidewater glaciers) is not the result of an increase in calving as the glacier retreated into deeper water. Instead, the retreat was initiated and maintained by thinning of the glacier. For Columbia Glacier, the continued thinning is probably associated with the increase in glacier speed and retreat may be expected to continue as long as these large speeds are maintained. It is not clear what mechanism may be responsible for the speed-up but the most likely candidate is a change in basal conditions or subglacial drainage. Consequently, the behavior of tidewater glaciers may be controlled by processes acting at the glacier bed rather than by what happens at the glacier terminus.

1996 ◽  
Vol 42 (141) ◽  
pp. 375-385 ◽  
Author(s):  
С.J. Van Der Veen

AbstractData from Columbia Glacier are used to identify processes that control calving from a temperate tidewater glacier and to re-evaluate models that have been proposed to describe iceberg calving. Since 1981, Columbia Glacier has been retreating rapidly, with an almost seven-fold increase in calving rate from the mid-1970s to 1993. At the same time, the speed of the glacier increased almost as much, so that the actual rate of retreat increased more slowly. According to the commonly accepted model, the calving rate is linearly related to the water depth at the terminus, with retreat of the glacier snout into deeper water, leading to larger calving rates and accelerated retreat. The Columbia Glacier data show that the calving rate is not simply linked to observed quantities such as water depth or stretching rate near the terminus. During the retreat, the thickness at the terminus appears to be linearly correlated with the water depth; at the terminus, the thickness in excess of flotation remained at about 50 m. This suggests that retreat may be initiated when the terminal thickness becomes too small, with the rate of retreat controlled by the rate at which the snout is thinning and by the basal slope. The implication is that the rapid retreat of Columbia Glacier (and other comparable tidewater glaciers) is not the result of an increase in calving as the glacier retreated into deeper water. Instead, the retreat was initiated and maintained by thinning of the glacier. For Columbia Glacier, the continued thinning is probably associated with the increase in glacier speed and retreat may be expected to continue as long as these large speeds are maintained. It is not clear what mechanism may be responsible for the speed-up but the most likely candidate is a change in basal conditions or subglacial drainage. Consequently, the behavior of tidewater glaciers may be controlled by processes acting at the glacier bed rather than by what happens at the glacier terminus.


1991 ◽  
Vol 15 ◽  
pp. 115-118 ◽  
Author(s):  
Mauri S. Pelto ◽  
Charles R. Warren

An analysis of the relationship between iceberg calving rates and water depth has been completed for 22 tidewater glaciers. A linear relationship provides reasonable accuracy, with a correlation coefficient of 0.85, for all tidewater glaciers examined, whether they be polar or temperate. The polar glaciers have a slightly lower calving rate for a given water depth. This relationship indicates a lower calving rate for water depths over 50 m than determined by Brown and others (1982). It is based only on glaciers or ice streams and cannot be applied to ice shelves.


1991 ◽  
Vol 15 ◽  
pp. 115-118 ◽  
Author(s):  
Mauri S. Pelto ◽  
Charles R. Warren

An analysis of the relationship between iceberg calving rates and water depth has been completed for 22 tidewater glaciers. A linear relationship provides reasonable accuracy, with a correlation coefficient of 0.85, for all tidewater glaciers examined, whether they be polar or temperate. The polar glaciers have a slightly lower calving rate for a given water depth. This relationship indicates a lower calving rate for water depths over 50 m than determined by Brown and others (1982). It is based only on glaciers or ice streams and cannot be applied to ice shelves.


2006 ◽  
Vol 52 (177) ◽  
pp. 183-190 ◽  
Author(s):  
F.M. Nick ◽  
J. Oerlemans

AbstractA minimal model of a tidewater glacier based solely on mass conservation is compared with two one-dimensional numerical flowline models, one with the calving rate proportional to water depth, and the other with the flotation criterion as a boundary condition at the glacier terminus. The models were run with two simplified bed geometries and two mass-balance formulations. The models simulate the full cycle of length variations and the equilibrium states for a tidewater glacier. This study shows that the branching of the equilibrium states depends significantly on the bed geometry. The similarity between the results of the three models indicates that if there is a submarine undulation at the terminus of a tidewater glacier, any model in which the frontal ice loss is related to the water depth yields qualitatively the same non-linear behaviour. For large glaciers extending into deep water, the flotation model causes unrealistic behaviour.


2002 ◽  
Vol 48 (163) ◽  
pp. 592-600 ◽  
Author(s):  
Andreas Vieli ◽  
Jacek Jania ◽  
Lezek Kolondra

AbstractBased on observations and model calculations, the retreat over the last two decades of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard, is investigated. The observations of the calving-front position between 1982 and 1998 show an abrupt retreat in 1990, which is suggested to be related to a depression in the glacier bed. The observed seasonal variations of the front position are mainly due to variations of the calving rate. The observations of Hansbreen further indicate that during periods of slow front-position changes, melting at the water-line may play an important role in triggering the process of calving. The evolution of Hansbreen between 1982 and 1998 is simulated with a numerical model for the dynamics of tidewater glaciers. Using a flotation criterion for calving in which for each time-step the part of the glacier terminus which is below a critical height above buoyancy is removed, we are able to reproduce the observed rapid retreat of Hansbreen through the depression in the glacier bed. From the observations and model calculations, we conclude that the rapid retreat is mainly an effect of basal topography in the terminus region and not a direct response to a change in mass balance.


2005 ◽  
Vol 42 ◽  
pp. 1-6 ◽  
Author(s):  
J. Oerlemans ◽  
F.M. Nick

AbstractWe propose a simple, highly parameterized model of a tidewater glacier. The mean ice thickness and the ice thickness at the glacier front are parameterized in terms of glacier length and, when the glacier is calving, water depth. We use a linear relation between calving rate and water depth. The change in glacier length is determined by the total change in the mass budget (surface balance and calving flux), but not by the details of the glacier profile and the related velocity field. We show that this may still yield relatively rapid rates of retreat for an idealized bed geometry with a smooth overdeepening. The model is able to simulate the full cycle of ice-free conditions, glacier terminus on land, tidewater glaciers terminus, and backwards. We study two cases: (i) a glacier with a specific balance (accumulation) that is spatially uniform, and (ii) a glacier in a warmer climate with the specific balance being a linear function of altitude. Equilibrium states exhibit a double branching with respect to the climatic forcing (equilibrium-line altitude). One bifurcation is related to the dependence of the calving process on the bed profile; the other bifurcation is due to the height–mass-balance feedback. We discuss the structure of the solution diagram for different values of the calving-rate parameter. The model results are similar to those of Vieli and others (2001), who combined a fairly sophisticated two-dimensional (vertical plane) numerical ice-flow model with the modified flotation criterion suggested by Van der Veen (1996). With regard to the global dynamics of a tidewater glacier, we conclude that the details of the glacier profile or velocity field are less significant than the bed profile and the relation between the water depth and the calving rate.


2011 ◽  
Vol 57 (205) ◽  
pp. 841-847 ◽  
Author(s):  
Laura M. Kehrl ◽  
Robert L. Hawley ◽  
Ross D. Powell ◽  
Julie Brigham-Grette

AbstractTidewater glaciers deposit sediment at their terminus, thereby reducing the relative water depth. Reduced water depth can lead to increased glacier stability through decreased rates of iceberg calving, glacier thinning and submarine melting. Here we investigate sedimentation processes at the termini of Kronebreen and Kongsvegen, Svalbard. We mapped the fjord floor bathymetry in August 2009 and calculate sedimentation rates based on our bathymetry and that from a similar study in 2005. A grounding-line fan is developing near the current position of the subglacial stream. An older, abandoned grounding-line fan that likely formed between ∼1987 and 2001 is degrading near the middle of the ice front. Our findings indicate that sediment gravity flows reduce the height of the sediment mound forming at the glacier terminus. The future impact of glacimarine sedimentation processes on glacier stability will depend on the net balance between the observed gravity flows and sediment deposition.


2014 ◽  
Vol 48 (5) ◽  
pp. 81-91 ◽  
Author(s):  
Steve Foga ◽  
Leigh A. Stearns ◽  
C.J. van der Veen

AbstractIceberg calving is an efficient mechanism for ice mass loss, and rapidly calving glaciers are often considered to be inherently unstable. However, the physical controls on calving are not well understood. Recent studies hypothesize that the presence of a rigid ice mélange (composed of icebergs, bergy bits, and sea ice) can reduce iceberg calving by providing “backstress” to the terminus. To test this hypothesis we use remote sensing techniques to construct a time series model of calving rate and size and composition of the adjacent ice mélange. We describe a semi-automated routine for expediting the digitization process and illustrate the methods for Helheim Glacier, East Greenland, using 2008 data. Ice velocities of the glacier terminus and ice mélange are derived with feature-tracking software applied to radar imagery, which is successfully tracked year-round. Object-based image analysis (OBIA) is used to inventory icebergs and sea ice within the ice mélange. We find that the model successfully identifies the calving rate and ice mélange response trends associated with seasonal increases in terminus retreat and advance and shows seasonal trends of ice mélange potentially providing seasonal backstress on the glacier terminus.


2020 ◽  
Author(s):  
Charlie Bunce ◽  
Pete Nienow ◽  
Noel Gourmelen ◽  
Tom Cowton

<p>Successful prediction of the response of the Greenland Ice Sheet to climate warming requires accurate estimation of future ice loss from tidewater glaciers. Patterns of tidewater glacier retreat and advance have acted as an important proxy for understanding the processes associated with frontal ablation. It has not however been possible to effectively constrain commonality in these observed patterns that can then be directly linked to the influence of specific controls on ice loss. Here, we investigate planform changes in calving front morphology, an aspect of glacier dynamics that has received little prior attention; however, an improved understanding and quantification of the role of morphometric change in influencing glacier dynamics and iceberg calving may provide critical insights into tidewater glacier behaviour. We develop a buffer analysis method to quantify changes in calving front morphology at Narsap Sermia, a large tidewater glacier in southwest Greenland that has experienced substantial recent retreat. Our results reveal no distinct temporal or spatial patterns in the timing or magnitude of morphological change. Furthermore, we found no statistically significant relationships between morphological change and a range of forcing factors including air temperatures, modelled estimates of subglacial discharge and variations in glacier bed geometry. Our results therefore suggest that process driven morphological terminus change is not an effective predictor of terminus retreat and instead support the application of generalised parameterisations of tidewater glacier retreat within ice-dynamic models.</p>


2007 ◽  
Vol 46 ◽  
pp. 123-130 ◽  
Author(s):  
Douglas I. Benn ◽  
Nicholas R.J. Hulton ◽  
Ruth H. Mottram

AbstractA new calving criterion is introduced, which predicts calving where the depth of surface crevasses equals ice height above sea level. Crevasse depth is calculated from strain rates, and terminus position and calving rate are therefore functions of ice velocity, strain rate, ice thickness and water depth. We couple the calving criterion with three ‘sliding laws’, in which velocity is controlled by (1) basal drag, (2) lateral drag and (3) a combination of the two. In model 1, velocities and strain rates are dependent on effective pressure, and hence ice thickness relative to water depth. Imposed thinning can lead to acceleration and terminus retreat, and ice shelves cannot form. In model 2, ice velocity is independent of changes in ice thickness unless accompanied by changes in surface gradient. Velocities are strongly dependent on channel width, and calving margins tend to stabilize at flow-unit widenings. Model 3 exhibits the combined characteristics of the other two models, and suggests that calving glaciers are sensitive to imposed thickness changes if basal drag provides most resistance to flow, but stable if most resistance is from lateral drag. Ice shelves can form if reduction of basal drag occurs over a sufficiently long spatial scale. In combination, the new calving criterion and the basal–lateral drag sliding function (model 3) can be used to simulate much of the observed spectrum of behaviour of calving glaciers, and present new opportunities to model ice-sheet response to climate change.


Sign in / Sign up

Export Citation Format

Share Document