scholarly journals Water Pressure in Intra- and Subglacial Channels

1972 ◽  
Vol 11 (62) ◽  
pp. 177-203 ◽  
Author(s):  
Hans Röthlisberger

AbstractWater flowing in tubular channels inside a glacier produces frictional heat, which causes melting of the ice walls. However the channels also have a tendency to close under the overburden pressure. Using the equilibrium equation that at every cross-section as much ice is melted as flows in, differential equations are given for steady flow in horizontal, inclined and vertical channels at variable depth and for variable discharge, ice properties and channel roughness. It is shown that the pressure decreases with increasing discharge, which proves that water must flow in main arteries. The same argument is used to show that certain glacier lakes above long flat valley glaciers must form in times of low discharge and empty when the discharge is high, i.e. when the water head in the subglacial drainage system drops below the lake level. Under the conditions of the model an ice mass of uniform thickness does not float, i.e. there is no water layer at the bottom, when the bed is inclined in the down-hill direction, but it can float on a horizontal bed if the exponent n of the law for the ice creep is small. It is further shown that basal streams (bottom conduits) and lateral streams at the hydraulic grade line (gradient conduits) can coexist. Time-dependent flow, local topography, ice motion, and sediment load are not accounted for in the theory, although they may strongly influence the actual course of the water. Computations have been carried out for the Gornergletscher where the bed topography is known and where some data are available on subglacial water pressure.

1972 ◽  
Vol 11 (62) ◽  
pp. 177-203 ◽  
Author(s):  
Hans Röthlisberger

AbstractWater flowing in tubular channels inside a glacier produces frictional heat, which causes melting of the ice walls. However the channels also have a tendency to close under the overburden pressure. Using the equilibrium equation that at every cross-section as much ice is melted as flows in, differential equations are given for steady flow in horizontal, inclined and vertical channels at variable depth and for variable discharge, ice properties and channel roughness. It is shown that the pressure decreases with increasing discharge, which proves that water must flow in main arteries. The same argument is used to show that certain glacier lakes above long flat valley glaciers must form in times of low discharge and empty when the discharge is high, i.e. when the water head in the subglacial drainage system drops below the lake level. Under the conditions of the model an ice mass of uniform thickness does not float, i.e. there is no water layer at the bottom, when the bed is inclined in the down-hill direction, but it can float on a horizontal bed if the exponentnof the law for the ice creep is small. It is further shown that basal streams (bottom conduits) and lateral streams at the hydraulic grade line (gradient conduits) can coexist. Time-dependent flow, local topography, ice motion, and sediment load are not accounted for in the theory, although they may strongly influence the actual course of the water. Computations have been carried out for the Gornergletscher where the bed topography is known and where some data are available on subglacial water pressure.


1986 ◽  
Vol 32 (112) ◽  
pp. 439-445 ◽  
Author(s):  
Joseph S. Walder

AbstractA theoretical model is developed to describe the steady-state behavior of interconnected, water-filled cavities at the glacier bed. Physically plausible cavities should contain constrictions along the flow path, with flow in the wider sections being relatively sluggish. Mean flow rates in cavities may be at least one order of magnitude less than in channels incised into the basal ice (R channels). Melting due to viscous dissipation - the process that allows R channels to exist - probably plays a minor or negligible role, as compared to glacier sliding, in determining the size of cavities. Furthermore, a system of subglacial cavities should not show a tendency for localization of flow in a few main conduits, as does an R-channel system. If water pressure rises to within several bars of overburden pressure, the rate of cavity closure by creep falls below the rate of cavity opening by sliding and melting, with cavities then becoming unstable. Subsequent evolution of the drainage system should depend upon the total melt-water flux. Circumstances may arise in which cavities and channels act as conduits for melt water; such a configuration would probably show unusual transient behavior.


2003 ◽  
Vol 15 (4) ◽  
pp. 547-555 ◽  
Author(s):  
D. REUSCH ◽  
T. HUGHES

Byrd Glacier has one of the largest ice catchment areas in Antarctica, delivers more ice to the Ross Ice Shelf than any other ice stream, and is the fastest of these ice streams. A force balance, combined with a mass balance, demonstrates that stream flow in Byrd Glacier is transitional from sheet flow in East Antarctica to shelf flow in the Ross Ice Shelf. The longitudinal pulling stress, calculated along an ice flowband from the force balance, is linked to variations of ice thickness, to the ratio of the basal water pressure to the ice overburden pressure where Byrd Glacier is grounded, and is reduced by an ice-shelf buttressing stress where Byrd Glacier is floating. Longitudinal tension peaks at pressure-ratio maxima in grounded ice and close to minima in the ratio of the pulling stress to the buttressing stress in floating ice. The longitudinal spacing of these tension peaks is rather uniform and, for grounded ice, the peaks occur at maxima in surface slope that have no clear relation to the bed slope. This implies that the maxima in surface slope constitute a “wave train” that is related to regular variations in ice-bed coupling, not primarily to bed topography. It is unclear whether these surface “waves” are “standing waves” or are migrating either upslope or downslope, possibly causing the grounding line to either retreat or advance. Deciding which is the case will require obtaining bed topography in the map plane, a new map of surface topography, and more sophisticated modeling that includes ice flow linked to subglacial hydrology in the map plane.


2017 ◽  
Vol 63 (240) ◽  
pp. 670-682 ◽  
Author(s):  
BERGUR EINARSSON ◽  
TÓMAS JÓHANNESSON ◽  
THORSTEINN THORSTEINSSON ◽  
ERIC GAIDOS ◽  
THOMAS ZWINGER

ABSTRACTDischarge and water temperature measurements in the Skaftá river and measurements of the lowering of the ice over the subglacial lake at the western Skaftá cauldron, Vatnajökull, Iceland, were made during a rapidly rising glacial outburst flood (jökulhlaup) in September 2006. Outflow from the lake, flood discharge at the glacier terminus and the transient subglacial volume of floodwater during the jökulhlaup are derived from these data. The 40 km long initial subglacial path of the jökulhlaup was mainly formed by lifting and deformation of the overlying ice, induced by water pressure in excess of the ice overburden pressure. Melting of ice due to the heat of the floodwater from the subglacial lake and frictional heat generated by the dissipation of potential energy in the flow played a smaller role. Therefore this event, like other rapidly rising jökulhlaups, cannot be explained by the jökulhlaup theory of Nye (1976). Instead, our observations indicate that they can be explained by a coupled subglacial-sheet–conduit mechanism where essentially all of the initial flood path is formed as a sheet by the propagation of a subglacial pressure wave.


2005 ◽  
Vol 40 ◽  
pp. 31-36 ◽  
Author(s):  
Joel T. Harper ◽  
Neil F. Humphrey ◽  
W. Tad Pfeffer ◽  
Tyler Fudge ◽  
Shad O’Neel

AbstractObservations from along the length of Bench Glacier, Alaska, USA, show that the subglacial water-pressure field undergoes a multiphase transition from a winter mode to a summer mode. Data were collected at the glacier surface, the outlet stream, and in a network of 47 boreholes spanning the length of the 7 km long glacier. The winter pressure field was near overburden, with low-magnitude (centimeter to meter scale) and long-period (days to weeks) variations. During a spring speed-up event, boreholes showed synchronous variations and a slight pressure drop from prior winter values. Diurnal pressure variations followed the speed-up, with their onset associated with a glacier-wide pressure drop and flood at the terminus stream. Diurnal variations with swings of up to 80% of overburden pressure were typical of mid-summer. Several characteristics of our observations contradict common conceptions about the seasonal development of the subglacial drainage system and the linkages between subglacial hydrology and basal sliding: (1) increased water pressure did not accompany high sliding rates; (2) the drainage system showed activity characteristic of the spring season long before abundant water was available on the glacier surface; (3) the onset of both spring activity and diurnal variations of the drainage system did not show a spatial progression along the length of the glacier.


1986 ◽  
Vol 32 (112) ◽  
pp. 439-445 ◽  
Author(s):  
Joseph S. Walder

AbstractA theoretical model is developed to describe the steady-state behavior of interconnected, water-filled cavities at the glacier bed. Physically plausible cavities should contain constrictions along the flow path, with flow in the wider sections being relatively sluggish. Mean flow rates in cavities may be at least one order of magnitude less than in channels incised into the basal ice (R channels). Melting due to viscous dissipation - the process that allows R channels to exist - probably plays a minor or negligible role, as compared to glacier sliding, in determining the size of cavities. Furthermore, a system of subglacial cavities should not show a tendency for localization of flow in a few main conduits, as does an R-channel system. If water pressure rises to within several bars of overburden pressure, the rate of cavity closure by creep falls below the rate of cavity opening by sliding and melting, with cavities then becoming unstable. Subsequent evolution of the drainage system should depend upon the total melt-water flux. Circumstances may arise in which cavities and channels act as conduits for melt water; such a configuration would probably show unusual transient behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jinpeng Zhao ◽  
Zhongsheng Tan ◽  
Zhenliang Zhou

With the orderly promotion of the infrastructure construction in China, the number of coastal tunnels is increasing, but the coastal environment is accompanied by a large amount of groundwater and the designs of the waterproof and drainage system of coastal tunnels have always been a hot topic in the industry. If the waterproof and drainage system designs of the coastal tunnels are improper, the tunnel structure will easily be damaged and the stability and service life of the whole project will be affected. Based on the Gongbei tunnel project of the Hong Kong-Zhuhai-Macao Bridge, this paper discusses the designs of the waterproof and drainage system, and the waterproof detail structures of the Gongbei tunnel. Indoor similarity tests were carried out to study the law of the free water discharge of the tunnel under variable water heads, the relationship between the water pressure outside the lining and the water discharge, the relationship between the water pressure outside the pipe roof and the water discharge, and the distribution of water pressure around the tunnel. The reliability of the indoor similarity test was verified by the field test. The results show that the whole waterproof system should be adopted in the Gongbei tunnel, that is, grouting ring + pipe roof freezing ring + initial lining + waterproof board + tertiary lining. In a certain range, the greater the water head, the greater the free water discharge of the tunnel. When the water head is large, the free drainage tends to a fixed value. When the tunnel is completely plugged, the water pressure outside the tunnel is distributed from the hydrostatic pressure. When the tunnel adopts drainage measures, the water pressure outside the lining will be reduced to a certain extent even the water discharge is very small. The above research can provide a reference for the design of the waterproof and drainage system similar to the coastal tunnel in the future.


2014 ◽  
Vol 60 (222) ◽  
pp. 725-734 ◽  
Author(s):  
Christine F. Dow ◽  
Jeffrey L. Kavanaugh ◽  
Johnny W. Sanders ◽  
Kurt M. Cuffey

AbstractBorehole instrument records from a cirque glacier with an overdeepened bed are examined to assess the validity of widely held glacial hydrological assumptions. At this glacier, hydraulic-potential calculations suggest water below overburden pressure will flow into the overdeepening, where the steepness of the riegel causes water to pool in the basin and increase in pressure. Our subglacial water pressure data also show high consistent pressures in the overdeepening and the presence of an active, variable-pressure drainage system towards the margin of the cirque. Therefore, we find that although uniform hydraulic-potential calculations are not directly applicable, they can still be useful for interpretation of the subglacial hydrological system. We also examine supercooling assumptions under different pressure and temperature regimes for water flowing over a riegel, driven using our borehole records of subglacial water temperatures that are consistently above the pressure-melting point during the late melt season. Our results show that even a slight increase in basal temperatures relative to the local pressure-melting point is sufficient to prevent a reduction in basal hydraulic conductivity as a result of supercooling freeze-on.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1989 ◽  
Vol 35 (120) ◽  
pp. 201-208 ◽  
Author(s):  
Peter Jansson ◽  
Roger LeB. Hooke

AbstractTiltmeters that can detect changes in slope of a glacier surface as small as 0.1 μ rad have been used on Storglaciären. The records obtained to date have been from the upper part of the ablation area, where the bed of the glacier is overdeepened. A total of 82 d of records has been obtained for various time periods between early June and early September.There is generally a gradual change in inclination of the glacier surface over periods of several days, but these changes do not appear to be systematic. In particular, they are not consistent with vertical movements of stakes located 2–3 ice thicknesses away from the tiltmeters. This suggests that the tiltmeters are sensing disturbances over areas with diameters comparable to the local ice thickness.Superimposed on these trends are diurnal signals suggesting rises and falls of the surface just up-glacier from the riegel that bounds the overdeepening on its down-glacier end. These may be due to waves of high water pressure originating in a crevassed area near the equilibrium line. If this interpretation is correct, the waves apparently move down-glacier at speeds of 20–60 m h−1and become sufficiently focused, either by the bed topography or by conduit constrictions, to result in local uplift of the surface. Also observed are abrupt tilts towards the glacier center line shortly after the beginning of heavy rainstorms. These appear to be due to longitudinal stretching as the part of the glacier below the riegel accelerates faster than that above. Water entering the glacier by way of a series of crevasses over the riegel is believed to be responsible for this differential acceleration. In June 1987, a dramatic event was registered, probably reflecting the initial summer acceleration of the glacier.


Sign in / Sign up

Export Citation Format

Share Document