scholarly journals Albedo and Degree of Puddling of a Melting Cover of Sea Ice

1969 ◽  
Vol 8 (54) ◽  
pp. 407-412 ◽  
Author(s):  
M. P. Langleben

AbstractContinuous measurements of incident and reflected short-wave radiation have been obtained from 12 May to 17 June 1968 on the ice cover at Tanquary Fiord, Ellesmere Island (lat. 81° 25′ N., long. 76° 50′ W.). The observations were made with radiometers suspended between two towers at a height of 50 ft (15 m) to sample an area large enough to be representative of the surface of the ice cover. From the start of surface melting, time-lapse photographs were taken at intervals of 3 h with a camera mounted on one of the towers at a height of 20 ft (6 m) and slanted below the horizontal.Values are presented, for the observation period, of incident short-wave radiation, albedo, air temperature at screen height and percentage of surface covered with melt pools. It is shown that the albedo decreases linearly with increasing area of water puddles.

1969 ◽  
Vol 8 (54) ◽  
pp. 407-412 ◽  
Author(s):  
M. P. Langleben

AbstractContinuous measurements of incident and reflected short-wave radiation have been obtained from 12 May to 17 June 1968 on the ice cover at Tanquary Fiord, Ellesmere Island (lat. 81° 25′ N., long. 76° 50′ W.). The observations were made with radiometers suspended between two towers at a height of 50 ft (15 m) to sample an area large enough to be representative of the surface of the ice cover. From the start of surface melting, time-lapse photographs were taken at intervals of 3 h with a camera mounted on one of the towers at a height of 20 ft (6 m) and slanted below the horizontal.Values are presented, for the observation period, of incident short-wave radiation, albedo, air temperature at screen height and percentage of surface covered with melt pools. It is shown that the albedo decreases linearly with increasing area of water puddles.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


1985 ◽  
Vol 107 (2) ◽  
pp. 177-182 ◽  
Author(s):  
G. D. Ashton

The deterioration of floating ice covers is analyzed to determine under what conditions the ice cover loses strength due to internal melting. The analysis considers the interaction between sensible heat transfer and long wave radiation loss at the surface, the surface albedo, the short wave radiation penetration and absorption and the unsteady heat conduction within the ice. The thermal analysis then leads to a determination of the porosity of the ice that allows strength analysis to be made using beam-type analyses. The results provide criteria to determine when and how rapidly the ice cover loses strength and under what conditions it will regain the original strength associated with an ice cover of full integrity.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

Two Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equationA= 0.59 —0.32PwherePis the degree of puddling of the surface.


2011 ◽  
Vol 8 (3) ◽  
pp. 4331-4357
Author(s):  
E. V. Kharyutkina ◽  
I. I. Ippolitov ◽  
S. V. Loginov

Abstract. The variability of spatial-temporal distribution of temperature and radiative and heat balances components is investigated for the Asian territory of Russia (45–80° N, 60–180° E) using JRA-25, NCEP/DOE AMIP reanalysis data and observational data for the period of current global warming 1979–2008. It is shown that since the beginning of 90s of XX century the increase of back earth-atmosphere short-wave radiation is observed. Such tendency is in conformity with the cloud cover dynamics and downward short-wave radiation at the surface. Annual averaged radiative balance values at the top are negative; it is consistent with negative annual averaged air temperature, averaged over territory. The downward trend of radiative balance is the most obvious after the beginning of 90s of XX century.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.


1974 ◽  
Vol 20 (4) ◽  
pp. 434-438
Author(s):  
E. M. Golubev ◽  
N. N. Ogurtsova ◽  
I. V. Podmoshenskii ◽  
P. N. Rogovtsev

Sign in / Sign up

Export Citation Format

Share Document