scholarly journals Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions

2021 ◽  
Author(s):  
Swapneel R. Kodupuganti ◽  
Sonu Mathew ◽  
Srinivas S. Pulugurtha

The rapid growth in population and related demand for travel during the past few decades has had a catalytic effect on traffic congestion, air quality, and safety in many urban areas. Transportation managers and planners have planned for new facilities to cater to the needs of users of alternative modes of transportation (e.g., public transportation, walking, and bicycling) over the next decade. However, there are no widely accepted methods, nor there is enough evidence to justify whether such plans are instrumental in improving mobility of the transportation system. Therefore, this project researches the operational performance of urban roads with heterogeneous traffic conditions to improve the mobility and reliability of people and goods. A 4-mile stretch of the Blue Line light rail transit (LRT) extension, which connects Old Concord Rd and the University of North Carolina at Charlotte’s main campus on N Tryon St in Charlotte, North Carolina, was considered for travel time reliability analysis. The influence of crosswalks, sidewalks, trails, greenways, on-street bicycle lanes, bus/LRT routes and stops/stations, and street network characteristics on travel time reliability were comprehensively considered from a multimodal perspective. Likewise, a 2.5-mile-long section of the Blue Line LRT extension, which connects University City Blvd and Mallard Creek Church Rd on N Tryon St in Charlotte, North Carolina, was considered for simulation-based operational analysis. Vissim traffic simulation software was used to compute and compare delay, queue length, and maximum queue length at nine intersections to evaluate the influence of vehicles, LRT, pedestrians, and bicyclists, individually and/or combined. The statistical significance of variations in travel time reliability were particularly less in the case of links on N Tryon St with the Blue Line LRT extension. However, a decrease in travel time reliability on some links was observed on the parallel route (I-85) and cross-streets. While a decrease in vehicle delay on northbound and southbound approaches of N Tryon St was observed in most cases after the LRT is in operation, the cross-streets of N Tryon St incurred a relatively higher increase in delay after the LRT is in operation. The current pedestrian and bicycling activity levels seemed insignificant to have an influence on vehicle delay at intersections. The methodological approaches from this research can be used to assess the performance of a transportation facility and identify remedial solutions from a multimodal perspective.

Author(s):  
Cynthia Taylor ◽  
Deirdere Meldrum ◽  
Les Jacobson

A fuzzy logic ramp-metering algorithm was designed to overcome the limitations of conventional ramp-metering strategies. The fuzzy controller demonstrated improved robustness, prevented heavy congestion, intelligently balanced conflicting needs, and tuned easily. The objective was to maximize total distance traveled and minimize total travel time and vehicle delay, while maintaining acceptable ramp queues. A multiple-ramp study site from the Seattle I-5 corridor was modeled and tested using the freeway simulation software, FRESIM. For five of the six testing sets, encompassing a variety of traffic conditions, the fuzzy controller outperformed the three other controllers tested.


2019 ◽  
Vol 27 (4) ◽  
pp. 250-265 ◽  
Author(s):  
Zhen Chen ◽  
Wei Fan

Abstract Travel time reliability (TTR) is an important measure which has been widely used to represent the traffic conditions on freeways. The objective of this study is to develop a systematic approach to analyzing TTR on roadway segments along a corridor. A case study is conducted to illustrate the TTR patterns using vehicle probe data collected on a freeway corridor in Charlotte, North Carolina. A number of influential factors are considered when analyzing TTR, which include, but are not limited to, time of day, day of week, year, and segment location. A time series model is developed and used to predict the TTR. Numerical results clearly indicate the uniqueness of TTR patterns under each case and under different days of week and weather conditions. The research results can provide insightful and objective information on the traffic conditions along freeway segments, and the developed data-driven models can be used to objectively predict the future TTRs, and thus to help transportation planners make informed decisions.


2020 ◽  
Vol 11 (2) ◽  
pp. 44-55
Author(s):  
Prosper S. Nyaki ◽  
Hannibal Bwire ◽  
Nurdin K. Mushule

AbstractThe assessment of travel time reliability enables precise prediction of travel times, better activity scheduling and decisions for all users of the road network. Furthermore, it helps to monitor traffic flow as a crucial strategy for reducing traffic congestion and ensuring high-quality service in urban roads. Travel time reliability is a useful reference tool for evaluating transport service quality, operating costs and system efficiency. However, many analyses of travel time reliability do not provide true travel variation under heterogeneous traffic flow conditions where traffic flow is a mixture of motorized and non-motorized transport. This study analysed travel time reliability under heterogeneous traffic conditions. The travel reliabilities focused on passenger waiting time at bus stops, in-vehicle travel time, and delay time at intersections which were analysed using buffer time, standard deviation, coefficient of variation, and planning time. The data used were obtained from five main bus routes in Dar es Salaam. The results indicate low service reliability in the outbound directions compared to inbound directions. They also intend to raise awareness of policy-makers about the situation and to make them shift from expanding road networks towards optimising road operations.


2017 ◽  
Vol 22 (2) ◽  
pp. 106-120 ◽  
Author(s):  
Fangfang Zheng ◽  
Jie Li ◽  
Henk van Zuylen ◽  
Xiaobo Liu ◽  
Hongtai Yang

2019 ◽  
Vol 49 (1) ◽  
pp. 66-73
Author(s):  
Ghayda Zawawa ◽  
Hana Naghawi

The main objective of this paper is to evaluate and compare the operational efficiency of a conventional signalized T-intersection with an unconventional Continues Green T-intersection under different congestion levels. The analysis was performed using Synchro.8 micro-simulation software. A total of 48 hypothetical scenarios, 24 scenarios for each design, were created by changing the approach volumes and turning percentages on the major / minor intersecting roadways to reflect different levels of congestion that may occur on any urban intersection. Total intersection delay, Level of Service, maximum queue length and volume-to-capacity ratio (v/c) were the measures of effectiveness used for comparison purposes. These performance measures were selected because they demonstrated the overall efficiency of the intersection design. The simulation results showed that the Continuous Green T-intersection operates the best under stable traffic conditions and that it is not an effective solution for signalized T-intersections under heavy traffic volume.


2021 ◽  
Vol 10 (2) ◽  
pp. 124
Author(s):  
Erny Agusri ◽  
Muhammad Arfan ◽  
Muhammad Arfan

VISSIM is a Simulations model which means a city traffic simulation model. VISSIM is a simulation software used by professionals to create simulations from dynamic traffic scenarios before making real plans. This research was conducted to determine how traffic performance and traffic performance optimization at the junctions between the existing conditions and the Vissim program caused by congestion. An effective method for overcoming non-jammed junctions can be made using the VISSIM method. This study was conducted at THREE-WAY JUNCTION in Jl. Sukabangun 2 (South) - Jl. R.A Abusamah (West) - Jl. Sukabangun 2 (Utara) - Jl. BeringinSukabangun 2 (East). In this study, three variations were used, namely the traffic light method, the method of forbidden turning right, and the method of dividing the road and turning signs. The results of PTV Vissim simulation showed that the traffic light method has a quite high queue length, namely 79m compared to the existing condition of 63m, for the vehicle delay in this method is 98.954s. On the method of forbidden turning right from the direction of Jl. BeringinSukabangun 2 (East) has a low queue length of 0.287m compared to the existing condition of 63m. The vehicle delay in this method is 13.307s. The method of dividing the road and turning signs, the queue length is quite low at 1.147m compared to the existing condition of 63m. The vehicle delay in this method is 30,169s. The results of the simulation revealed that the most effective method at THREE-WAY JUNCTION in jalanSukabangun 2 is method of forbidden turning right, dividing the roads and turning signs.  


Sign in / Sign up

Export Citation Format

Share Document