scholarly journals MASS DISTRIBUTION OF DARK MATTER HALO AND SCALE EVOLUTION OF EARLY TYPE GALAXIES

Author(s):  
D. Kairatkyzy ◽  
◽  
H. C. Quevedo ◽  
◽  
◽  
...  

In this paper we use two suites of ultra-high resolution N-body simulations Phoenix and Aquarius Projects to study the assembly history of sub-halos and its dependence on host halo mass. We found that more massive haloes have more progenitors, which is in contrast with former works because they counted dynamical progenitors repeatedly. Less massive halos have larger fraction of dynamical progenitors than more massive ones. The typical accretion time depends strongly on host halo mass. Progenitors of galactic halos are accreted at higher redshift than that of cluster halos. Once these progenitors orbit their primary systems, they rapidly lose their original mass but not their identifiers. Most of the progenitors are able to survive to present day. At given redshift, the survival fraction of accreted sub-halos is independent of host halo mass, while sub-halos in high mass halos lost more mass. In the second part, we use a semi-analytical galaxy formation model compiled on a Millennium Simulation to study the size evolution of massive early-type galaxies from redshift z = 2 to present days. We find that the model we used is able to well reproduce the amplitude and slope of size-mass relation, as well as its evolution. The amplitude of this relation reflects the typical compactness of dark matter halos at the time when most stars are formed. This link between size and star formation epoch is propagated in through galaxy combinations. Minor combinations are increasingly important with increasing present day stellar mass for galaxies more massive than 1011.4M⊙. At lower masses, major combinations are more important. In situ star formation contributes more to the size growth than it does to stellar mass growth. Similar to former works, we find that minor combinations dominate the subsequent growth both in stellar mass and in size for early formed early-type galaxies.

2020 ◽  
Vol 634 ◽  
pp. A135 ◽  
Author(s):  
G. Girelli ◽  
L. Pozzetti ◽  
M. Bolzonella ◽  
C. Giocoli ◽  
F. Marulli ◽  
...  

Aims. Understanding the link between the galaxy properties and the dark matter halos they reside in and their coevolution is a powerful tool for constraining the processes related to galaxy formation. In particular, the stellar-to-halo mass relation (SHMR) and its evolution throughout the history of the Universe provides insights on galaxy formation models and allows us to assign galaxy masses to halos in N-body dark matter simulations. To address these questions, we determine the SHMR throughout the entire cosmic history from z ∼ 4 to the present. Methods. We used a statistical approach to link the observed galaxy stellar mass functions on the COSMOS field to dark matter halo mass functions up to z ∼ 4 from the ΛCDM DUSTGRAIN-pathfinder simulation, which is complete for Mh >  1012.5 M⊙, and extended this to lower masses with a theoretical parameterization. We propose an empirical model to describe the evolution of the SHMR as a function of redshift (either in the presence or absence of a scatter in stellar mass at fixed halo mass), and compare the results with several literature works and semianalytic models of galaxy formation. We also tested the reliability of our results by comparing them to observed galaxy stellar mass functions and to clustering measurements. Results. We derive the SHMR from z = 0 to z = 4, and model its empirical evolution with redshift. We find that M*/Mh is always lower than ∼0.05 and depends both on redshift and halo mass, with a bell shape that peaks at Mh ∼ 1012 M⊙. Assuming a constant cosmic baryon fraction, we calculate the star-formation efficiency of galaxies and find that it is generally low; its peak increases with cosmic time from ∼30% at z ∼ 4 to ∼35% at z ∼ 0. Moreover, the star formation efficiency increases for increasing redshifts at masses higher than the peak of the SHMR, while the trend is reversed for masses lower than the peak. This indicates that massive galaxies (i.e., galaxies hosted at halo masses higher than the SHMR peak) formed with a higher efficiency at higher redshifts (i.e., downsizing effect) and vice versa for low-mass halos. We find a large scatter in results from semianalytic models, with a difference of up to a factor ∼8 compared to our results, and an opposite evolutionary trend at high halo masses. By comparing our results with those in the literature, we find that while at z ∼ 0 all results agree well (within a factor of ∼3), at z >  0 many differences emerge. This suggests that observational and theoretical work still needs to be done. Our results agree well (within ∼10%) with observed stellar mass functions (out to z = 4) and observed clustering of massive galaxies (M* >  1011 M⊙ from z ∼ 0.5 to z ∼ 1.1) in the two-halo regime.


2019 ◽  
Vol 492 (3) ◽  
pp. 3685-3707 ◽  
Author(s):  
Song Huang ◽  
Alexie Leauthaud ◽  
Andrew Hearin ◽  
Peter Behroozi ◽  
Christopher Bradshaw ◽  
...  

ABSTRACT Using deep images from the Hyper Suprime-Cam (HSC) survey and taking advantage of its unprecedented weak lensing capabilities, we reveal a remarkably tight connection between the stellar mass distribution of massive central galaxies and their host dark matter halo mass. Massive galaxies with more extended stellar mass distributions tend to live in more massive dark matter haloes. We explain this connection with a phenomenological model that assumes, (1) a tight relation between the halo mass and the total stellar content in the halo, (2) that the fraction of in situ and ex situ mass at r <10 kpc depends on halo mass. This model provides an excellent description of the stellar mass functions (SMFs) of total stellar mass ($M_{\star }^{\mathrm{max}}$) and stellar mass within inner 10 kpc ($M_{\star }^{10}$) and also reproduces the HSC weak lensing signals of massive galaxies with different stellar mass distributions. The best-fitting model shows that halo mass varies significantly at fixed total stellar mass (as much as 0.4 dex) with a clear dependence on $M_{\star }^{10}$. Our two-parameter $M_{\star }^{\mathrm{max}}$–$M_{\star }^{10}$ description provides a more accurate picture of the galaxy–halo connection at the high-mass end than the simple stellar–halo mass relation (SHMR) and opens a new window to connect the assembly history of haloes with those of central galaxies. The model also predicts that the ex situ component dominates the mass profiles of galaxies at r < 10 kpc for log M⋆ ≥ 11.7. The code used for this paper is available online https://github.com/dr-guangtou/asap


2020 ◽  
Vol 493 (1) ◽  
pp. 1361-1374 ◽  
Author(s):  
Arya Farahi ◽  
Matthew Ho ◽  
Hy Trac

ABSTRACT Cold dark matter model predicts that the large-scale structure grows hierarchically. Small dark matter haloes form first. Then, they grow gradually via continuous merger and accretion. These haloes host the majority of baryonic matter in the Universe in the form of hot gas and cold stellar phase. Determining how baryons are partitioned into these phases requires detailed modelling of galaxy formation and their assembly history. It is speculated that formation time of the same mass haloes might be correlated with their baryonic content. To evaluate this hypothesis, we employ haloes of mass above $10^{14}\, \mathrm{M}_{\odot }$ realized by TNG300 solution of the IllustrisTNG project. Formation time is not directly observable. Hence, we rely on the magnitude gap between the brightest and the fourth brightest halo galaxy member, which is shown that traces formation time of the host halo. We compute the conditional statistics of the stellar and gas content of haloes conditioned on their total mass and magnitude gap. We find a strong correlation between magnitude gap and gas mass, BCG stellar mass, and satellite galaxies stellar mass, but not the total stellar mass of halo. Conditioning on the magnitude gap can reduce the scatter about halo property–halo mass relation and has a significant impact on the conditional covariance. Reduction in the scatter can be as significant as 30 per cent, which implies more accurate halo mass prediction. Incorporating the magnitude gap has a potential to improve cosmological constraints using halo abundance and allows us to gain insight into the baryon evolution within these systems.


2019 ◽  
Vol 627 ◽  
pp. A131 ◽  
Author(s):  
M. Cousin ◽  
P. Guillard ◽  
M. D. Lehnert

Context. Star formation in galaxies is inefficient, and understanding how star formation is regulated in galaxies is one of the most fundamental challenges of contemporary astrophysics. Radiative cooling, feedback from supernovae and active galactic nuclei (AGN), and large-scale dynamics and dissipation of turbulent energy act over various time and spatial scales and all regulate star formation in a complex gas cycle. Aims. This paper presents the physics implemented in a new semi-analytical model of galaxy formation and evolution called the Galaxy Assembler from dark-matter Simulation (G.A.S.). Methods. The fundamental underpinning of our new model is the development of a multiphase interstellar medium (ISM) in which energy produced by supernovae and AGN maintains an equilibrium between a diffuse, hot, and stable gas and a cooler, clumpy, and low-volume filling factor gas. The hot gas is susceptible to thermal and dynamical instabilities. We include a description of how turbulence leads to the formation of giant molecular clouds through an inertial turbulent energy cascade, assuming a constant kinetic energy transfer per unit volume. We explicitly modelled the evolution of the velocity dispersion at different scales of the cascade and accounted for thermal instabilities in the hot halo gas. Thermal instabilities effectively reduce the impact of radiative cooling and moderates accretion rates onto galaxies, and in particular, for those residing in massive haloes. Results. We show that rapid and multiple exchanges between diffuse and unstable gas phases strongly regulates star formation rates in galaxies because only a small fraction of the unstable gas is forming stars. We checked that the characteristic timescales describing the gas cycle, gas depletion timescale, and star-forming laws at different scales are in good agreement with observations. For high-mass haloes and galaxies, cooling is naturally regulated by the growth of thermal instabilities, so we do not need to implement strong AGN feedback in this model. Our results are also in good agreement with the observed stellar mass function from z ≃ 6.0 to z ≃ 0.5. Conclusion. Our model offers the flexibility to test the impact of various physical processes on the regulation of star formation on a representative population of galaxies across cosmic times. Thermal instabilities and the cascade of turbulent energy in the dense gas phase introduce a delay between gas accretion and star formation, which keeps galaxy growth inefficient in the early Universe. The main results presented in this paper, such as stellar mass functions, are available in the GALAKSIENN library.


2018 ◽  
Vol 56 (1) ◽  
pp. 435-487 ◽  
Author(s):  
Risa H. Wechsler ◽  
Jeremy L. Tinker

In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as high-resolution cosmological simulations has provided a new window into the statistical relationship between galaxies and halos and its evolution. Here, we define this galaxy–halo connection as the multivariate distribution of galaxy and halo properties that can be derived from observations and simulations. This galaxy–halo connection provides a key test of physical galaxy-formation models; it also plays an essential role in constraints of cosmological models using galaxy surveys and in elucidating the properties of dark matter using galaxies. We review techniques for inferring the galaxy–halo connection and the insights that have arisen from these approaches. Some things we have learned are that galaxy-formation efficiency is a strong function of halo mass; at its peak in halos around a pivot halo mass of 1012M⊙, less than 20% of the available baryons have turned into stars by the present day; the intrinsic scatter in galaxy stellar mass is small, less than 0.2 dex at a given halo mass above this pivot mass; below this pivot mass galaxy stellar mass is a strong function of halo mass; the majority of stars over cosmic time were formed in a narrow region around this pivot mass. We also highlight key open questions about how galaxies and halos are connected, including understanding the correlations with secondary properties and the connection of these properties to galaxy clustering.


2012 ◽  
Vol 8 (S292) ◽  
pp. 245-245
Author(s):  
Jian Fu ◽  
Guinevere Kauffmann

AbstractWe study the redshift evolution of neutral and molecular gas in the interstellar medium with the results from semi-analytic models of galaxy formation and evolution, which track the cold gas related physical processes in radially resolved galaxy disks. Two kinds of prescriptions are adopted to describe the conversion between molecular and neutral gas in the ISM: one is related to the gas surface density and gas metallicity based on the model results by Krumholz, Mckee & Tumlinson; the other is related the pressure of ISM. We try four types of star formation laws in the models to study the effect of the molecular gas component and the star formation time scale on the model results, and find that the H2 dependent star formation rate with constant star formation efficiency is the preferred star formation law. We run the models based on both Millennium and Millennium II Simulation haloes, and the model parameters are adjusted to fit the observations at z = 0 from THINGS/HERACLES and ALFALFA/COLD GASS. We give predictions for the redshift evolution of cosmic star formation density, H2 to HI cosmic ratios, gas to star mass ratios and gas metallicity vs stellar mass relation. Based on the model results, we find that: (i) the difference in the H2 to HI ratio at z > 3 between the two H2 fraction prescriptions can help future observations to test which prescription is better; (ii) a constant redshift independent star formation time scale will postpone the star formation processes at high redshift and cause obvious redshift evolution for the relation between gas metallicity and stellar mass in galaxies at z < 3.


2019 ◽  
Vol 491 (2) ◽  
pp. 1656-1672 ◽  
Author(s):  
Oscar Agertz ◽  
Andrew Pontzen ◽  
Justin I Read ◽  
Martin P Rey ◽  
Matthew Orkney ◽  
...  

ABSTRACT We introduce the ‘Engineering Dwarfs at Galaxy Formation’s Edge’ (EDGE) project to study the cosmological formation and evolution of the smallest galaxies in the Universe. In this first paper, we explore the effects of resolution and sub-grid physics on a single low-mass halo ($M_{\rm halo}=10^{9}{\, \rm M}_\odot$), simulated to redshift z = 0 at a mass and spatial resolution of $\sim 20{\, \rm M}_\odot$ and ∼3 pc. We consider different star formation prescriptions, supernova feedback strengths, and on-the-fly radiative transfer (RT). We show that RT changes the mode of galactic self-regulation at this halo mass, suppressing star formation by causing the interstellar and circumgalactic gas to remain predominantly warm (∼104 K) even before cosmic reionization. By contrast, without RT, star formation regulation occurs only through starbursts and their associated vigorous galactic outflows. In spite of this difference, the entire simulation suite (with the exception of models without any feedback) matches observed dwarf galaxy sizes, velocity dispersions, V-band magnitudes, and dynamical mass-to-light-ratios. This is because such structural scaling relations are predominantly set by the host dark matter halo, with the remaining model-to-model variation being smaller than the observational scatter. We find that only the stellar mass–metallicity relation differentiates the galaxy formation models. Explosive feedback ejects more metals from the dwarf, leading to a lower metallicity at a fixed stellar mass. We conclude that the stellar mass–metallicity relation of the very smallest galaxies provides a unique constraint on galaxy formation physics.


2019 ◽  
Vol 488 (4) ◽  
pp. 4916-4925 ◽  
Author(s):  
Magdelena Allen ◽  
Peter Behroozi ◽  
Chung-Pei Ma

ABSTRACT Most galaxies are hosted by massive, invisible dark matter haloes, yet little is known about the scatter in the stellar mass–halo mass relation for galaxies with host halo masses Mh ≤ 1011M⊙. Using mock catalogues based on dark matter simulations, we find that two observable signatures are sensitive to scatter in the stellar mass–halo mass relation even at these mass scales; i.e. conditional stellar mass functions and velocity distribution functions for neighbouring galaxies. We compute these observables for  179,373 galaxies in the Sloan Digital Sky Survey (SDSS) with stellar masses M* &gt; 109 M⊙ and redshifts 0.01 &lt; z &lt; 0.307. We then compare to mock observations generated from the Bolshoi-Planck dark matter simulation for stellar mass–halo mass scatters ranging from 0 to 0.6 dex. The observed results are consistent with simulated results for most values of scatter (&lt;0.6 dex), and SDSS statistics are insufficient to provide firm constraints. However, this method could provide much tighter constraints on stellar mass–halo mass scatter in the future if applied to larger data sets, especially the anticipated Dark Energy Spectroscopic Instrument Bright Galaxy Survey. Constraining the value of scatter could have important implications for galaxy formation and evolution.


2018 ◽  
Vol 44 (1) ◽  
pp. 8-34 ◽  
Author(s):  
A. V. Kravtsov ◽  
A. A. Vikhlinin ◽  
A. V. Meshcheryakov

Sign in / Sign up

Export Citation Format

Share Document