scholarly journals ON THE SEARCH FOR HADRON MODES OF HIDDEN CHARM MESONS DECAY

Author(s):  
B.O. Zhautykov ◽  
◽  
N.S. Pokrovsky ◽  
V.V. Samoilov ◽  
◽  
...  

From the results obtained in publication [1] as well percentage between decay modes of exitated states of mesons, cited in reference book “Particle Data Group” became possible to evaluate the number of hadron final states on which the meson with hidden charm decay. In the paper is shown a rough estimate of final states number for hadron decays of mesons with hidden charm. The most statistically secured are the final states for ηс (1 S), 2 (π+π-) and π+π- K+K- for χс0 (1P) mesons.

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
...  

Abstract A data set corresponding to an integrated luminosity of 9 fb−1 of proton-proton collisions collected by the LHCb experiment has been analysed to search for $$ {B}_c^{+}\to {D}_{(s)}^{\left(\ast \right)+}{\genfrac{}{}{0pt}{}{\left(\hbox{---} \right)}{D}}^{\left(\ast \right)0} $$ B c + → D s ∗ + — D ∗ 0 decays. The decays are fully or partially reconstructed, where one or two missing neutral pions or photons from the decay of an excited charm meson are allowed. Upper limits for the branching fractions, normalised to B+ decays to final states with similar topologies, are obtained for sixteen $$ {B}_c^{+} $$ B c + decay modes. For the decay $$ {B}_c^{+}\to {D}_s^{+}{\overline{D}}^0 $$ B c + → D s + D ¯ 0 , an excess with a significance of 3.4 standard deviations is found.


Sci ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 59
Author(s):  
Leonardo Chiatti

This study analyzes the correlation between the lifetime and the rest energy of the unstable particle states with a lifetime greater than the zeptosecond (10−21 s), using data available from the Particle Data Group. This set of states seems to be divided into three groups, in each of which the two quantities can be correlated through a remarkably accurate power law. Although this fact does not represent anything new compared to the predictions of the Standard Model, it nevertheless reveals an unexpected order structure in the set of particle decays, emerging from such predictions.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 964-967
Author(s):  
R. NELSON ◽  
T. MART

The new experimental data of kaon photoproduction on the nucleon γp → K+Λ have been analyzed by means of a multipoles model. Different from the previous models, in this analysis the resonance decay widths are constrained to the values given by the Particle Data Group (PDG). The result indicates that constraining these parameters to the PDG values could dramatically change the conclusion of the important resonances in this reaction found in the previous studies.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
C. Hati ◽  
J. Kriewald ◽  
J. Orloff ◽  
A. M. Teixeira

AbstractMotivated by the recent experimental progress on the B-meson decay anomalies (in particular the angular observables in $$B\rightarrow K^*\mu \mu $$ B → K ∗ μ μ ), we rely on a simplified-model approach to study the prospects of vector leptoquarks in what concerns numerous flavour observables, identifying several promising decay modes which would allow to (indirectly) probe such an extension. Our findings suggest that the confirmation of the B-meson decay anomalies, in parallel with positive signals (at Belle II or LHCb) for $$\tau \rightarrow \phi \mu $$ τ → ϕ μ , $$B_{(s)}$$ B ( s ) -meson decays to $$\tau ^+ \tau ^-$$ τ + τ - and $$\tau ^+ \mu ^-$$ τ + μ - ($$\tau ^+ e^-$$ τ + e - ) final states, as well as an observation of certain charged lepton flavour violation decays (at COMET or Mu2e), would contribute to strengthen the case for this scenario. We also illustrate how the evolution of the experimental determination of $$R_{D^{(*)}}$$ R D ( ∗ ) could be instrumental in falsifying an explanation of the anomalous B-meson decay data via a vector $$V_1$$ V 1 leptoquark.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Michael J. Baker ◽  
Darius A. Faroughy ◽  
Sokratis Trifinopoulos

Abstract Motivated by UV explanations of the B-physics anomalies, we study a dark sector containing a Majorana dark matter candidate and a coloured coannihilation partner, connected to the Standard Model predominantly via a U1 vector leptoquark. A TeV scale U1 leptoquark, which couples mostly to third generation fermions, is the only successful single-mediator description of the B-physics anomalies. After calculating the dark matter relic surface, we focus on the most promising experimental avenue: LHC searches for the coloured coannihilation partner. We find that the coloured partner hadronizes and forms meson-like bound states leading to resonant signatures at colliders reminiscent of the quarkonia decay modes in the Standard Model. By recasting existing dilepton and monojet searches we exclude coannihilation partner masses less than 280 GeV and 400 GeV, respectively. Since other existing collider searches do not significantly probe the parameter space, we propose a new dedicated search strategy for pair production of the coloured partner decaying into bbττ final states and dark matter particles. This search is expected to probe the model up to dark matter masses around 600 GeV with current luminosity.


Author(s):  
Ivan Martinez-Soler ◽  
Hisakazu Minakata

Abstract We formulate a perturbative framework for the flavor transformation of the standard active three neutrinos but with a non-unitary flavor mixing matrix, a system which may be relevant for the leptonic unitarity test. We use the $\alpha$ parametrization of the non-unitary matrix and take its elements $\alpha_{\beta \gamma}$ ($\beta,\gamma = e,\mu,\tau$) and the ratio $\epsilon \simeq \Delta m^2_{21} / \Delta m^2_{31}$ as the small expansion parameters. Two qualitatively new features that hold in all the oscillation channels are uncovered in the probability formula obtained to first order in the expansion: (1) The phases of the complex $\alpha$ elements always come into the observable in the particular combination with the $\nu$SM CP phase $\delta$ in the form $[e^{- i \delta } \bar{\alpha}_{\mu e}, ~e^{ - i \delta} \bar{\alpha}_{\tau e}, ~\bar{\alpha}_{\tau \mu}]$ under the Particle Data Group convention of a unitary $\nu$SM mixing matrix. (2) The diagonal $\alpha$ parameters appear in particular combinations $\left( a/b - 1 \right) \alpha_{ee} + \alpha_{\mu \mu}$ and $\alpha_{\mu \mu} - \alpha_{\tau \tau}$, where $a$ and $b$ denote, respectively, the matter potential due to charged current and neutral current reactions. This property holds only in the unitary evolution part of the probability, and there is no such feature in the genuine non-unitary part, while the $\delta$–$\alpha$ parameter phase correlation exists for both. The reason for such remarkable stability of the phase correlation is discussed.


Sign in / Sign up

Export Citation Format

Share Document