The influence of heating temperature on the physical and chemical properties of soils with different parent materials and anthropogenic uses
Although natural and controlled fires are common in natural environments of the Province of Córdoba (Argentina), the effects on the physical and chemical soil properties are not well known. Warming effects were studied in two representative soil parent materials located in the piedmont of the Sierra Chica, Córdoba, Argentina. The aim of this study was to quantify the changes caused by different heating temperatures (100 °C and 500 °C), under laboratory conditions, on physical and chemical properties of two soils with different granulometric compositions and anthropic uses. The soils were classified as Udic Haplustoll, fine loamy (alluvial soils) and Udic Argiustoll, fine silty (loessoides soils). The depth analyzed corresponded to the upper 5 cm of the surface horizon. The physical property was granulometric composition (clay, silt and sand content) and the chemical properties: pH, oxidizable carbon (Cox), total nitrogen (Nt), cation exchange capacity (CEC), exchangeable cations (Ca<sup>+2</sup>, Mg<sup>+2</sup>, Na<sup>+</sup>, K<sup>+</sup>), extractable phosphorus (Pe) and electrical conductivity (EC). These analyses included both unheated samples (control) and those heated at different temperatures. Cox, pH, EC and CEC showed similar behavior at the different heating temperatures, despite the parent materials and the soil use conditions. Cox, pH, Nt and CEC could statistically explain the differences in edaphic properties at the temperatures analyzed. At 300 °C statistically significant differences were recorded for the analyzed soil parameters, and at 500 °C changes difficult to reverse due to the inorganic colloidal fraction collapse and the decrease (90%) of the organic fraction were found.