scholarly journals LIFETIME ESTIMATION OF NUCLEAR POWER INSTALLATION PIPELINES UNDER RESTRAINED DISPLACEMENT IN SUPPORTS USING LOW-CYCLE FATIGUE CRITERIA

2005 ◽  
Vol 67 (1) ◽  
pp. 37-45 ◽  
Author(s):  
V.A. Pakhomov ◽  
O.V. Sarapov
2006 ◽  
Vol 326-328 ◽  
pp. 1011-1014 ◽  
Author(s):  
Ill Seok Jeong ◽  
Sang Jai Kim ◽  
Taek Ho Song ◽  
Sung Yull Hong

For developing fatigue design curve of cast stainless steel that is used in piping material of nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical solid fatigue specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with other previous results.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8400
Author(s):  
Sung-Wan Kim ◽  
Da-Woon Yun ◽  
Bub-Gyu Jeon ◽  
Dae-Gi Hahm ◽  
Min-Kyu Kim

The installation of base isolation systems in nuclear power plants can improve their safety from seismic loads. However, nuclear power plants with base isolation systems experience greater displacement as they handle seismic loads. The increase in relative displacement is caused by the installed base isolation systems, which increase the seismic risk of the interface piping system. It was found that the failure mode of the interface piping system was low-cycle fatigue failure accompanied by ratcheting, and the fittings (elbows and tees) failed due to the concentration of nonlinear behavior. Therefore, in this study, the limit state was defined as leakage, and an in-plane cyclic loading test was conducted in order to quantitatively express the failure criteria for the SCH40 6-inch carbon steel pipe elbow due to low-cycle fatigue failure. The leakage line and low-cycle fatigue curves of the SCH40 6-inch carbon steel pipe elbow were presented based on the test results. In addition, the limit state was quantitatively expressed using the damage index, based on the combination of ductility and energy dissipation. The average values of the damage index for the 6-inch pipe elbow calculated using the force−displacement (P–D) and moment−relative deformation angle (M–R) relationships were found to be 10.91 and 11.27, respectively.


2015 ◽  
Vol 59 (3) ◽  
pp. 91-98
Author(s):  
V. Šefl

Abstract In this literature review we identify and quantify the parameters influencing the low-cycle fatigue life of materials commonly used in nuclear power plants. The parameters are divided into several groups and individually described. The main groups are material properties, mode of cycling and environment parameters. The groups are further divided by the material type - some parameters influence only certain kind of material, e.g. sulfur content may decreases fatigue life of carbon steel, but is not relevant for austenitic stainless steel; austenitic stainless steel is more sensitive to concentration of dissolved oxygen in the environment compared to the carbon steel. The combination of parameters i.e. conjoint action of several detrimental parameters is discussed. It is also noted that for certain parameters to decrease fatigue life, it is necessary for other parameter to reach certain threshold value. Two different approaches have been suggested in literature to describe this complex problem - the Fen factor and development of new design fatigue curves. The threshold values and examples of commonly used relationships for calculation of fatigue lives are included. This work is valuable because it provides the reader with long-term literature review with focus on real effect of environmental parameters on fatigue life of nuclear power plant materials.


2010 ◽  
Vol 2010 (0) ◽  
pp. 744-745
Author(s):  
Makoto OHTA ◽  
Yoshihiro MIZUTANI ◽  
Akira TODOROKI ◽  
Ryosuke MATSUZAKI

Sign in / Sign up

Export Citation Format

Share Document