scholarly journals Inverse Reinforcement Learning Through Max-Margin Algorithm

Author(s):  
Syed Ihtesham Hussain Shah ◽  
Antonio Coronato

Reinforcement Learning (RL) methods provide a solution for decision-making problems under uncertainty. An agent finds a suitable policy through a reward function by interacting with a dynamic environment. However, for complex and large problems it is very difficult to specify and tune the reward function. Inverse Reinforcement Learning (IRL) may mitigate this problem by learning the reward function through expert demonstrations. This work exploits an IRL method named Max-Margin Algorithm (MMA) to learn the reward function for a robotic navigation problem. The learned reward function reveals the demonstrated policy (expert policy) better than all other policies. Results show that this method has better convergence and learned reward functions through the adopted method represents expert behavior more efficiently.

Author(s):  
Zhenhai Gao ◽  
Xiangtong Yan ◽  
Fei Gao ◽  
Lei He

Decision-making is one of the key parts of the research on vehicle longitudinal autonomous driving. Considering the behavior of human drivers when designing autonomous driving decision-making strategies is a current research hotspot. In longitudinal autonomous driving decision-making strategies, traditional rule-based decision-making strategies are difficult to apply to complex scenarios. Current decision-making methods that use reinforcement learning and deep reinforcement learning construct reward functions designed with safety, comfort, and economy. Compared with human drivers, the obtained decision strategies still have big gaps. Focusing on the above problems, this paper uses the driver’s behavior data to design the reward function of the deep reinforcement learning algorithm through BP neural network fitting, and uses the deep reinforcement learning DQN algorithm and the DDPG algorithm to establish two driver-like longitudinal autonomous driving decision-making models. The simulation experiment compares the decision-making effect of the two models with the driver curve. The results shows that the two algorithms can realize driver-like decision-making, and the consistency of the DDPG algorithm and human driver behavior is higher than that of the DQN algorithm, the effect of the DDPG algorithm is better than the DQN algorithm.


Author(s):  
Syed Ihtesham Hussain Shah ◽  
Giuseppe De Pietro

In decision-making problems reward function plays an important role in finding the best policy. Reinforcement Learning (RL) provides a solution for decision-making problems under uncertainty in an Intelligent Environment (IE). However, it is difficult to specify the reward function for RL agents in large and complex problems. To counter these problems an extension of RL problem named Inverse Reinforcement Learning (IRL) is introduced, where reward function is learned from expert demonstrations. IRL is appealing for its potential use to build autonomous agents, capable of modeling others, deprived of compromising in performance of the task. This approach of learning by demonstrations relies on the framework of Markov Decision Process (MDP). This article elaborates original IRL algorithms along with their close variants to mitigate challenges. The purpose of this paper is to highlight an overview and theoretical background of IRL in the field of Machine Learning (ML) and Artificial Intelligence (AI). We presented a brief comparison between different variants of IRL in this article.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1997
Author(s):  
Qiang FangWenzhuo Fang ◽  
Wenzhuo Zhang ◽  
Xitong Wang

In this paper, we focus on the challenges of training efficiency, the designation of reward functions, and generalization in reinforcement learning for visual navigation and propose a regularized extreme learning machine-based inverse reinforcement learning approach (RELM-IRL) to improve the navigation performance. Our contributions are mainly three-fold: First, a framework combining extreme learning machine with inverse reinforcement learning is presented. This framework can improve the sample efficiency and obtain the reward function directly from the image information observed by the agent and improve the generation for the new target and the new environment. Second, the extreme learning machine is regularized by multi-response sparse regression and the leave-one-out method, which can further improve the generalization ability. Simulation experiments in the AI-THOR environment showed that the proposed approach outperformed previous end-to-end approaches, thus, demonstrating the effectiveness and efficiency of our approach.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881716 ◽  
Author(s):  
Hongbo Gao ◽  
Guanya Shi ◽  
Guotao Xie ◽  
Bo Cheng

There are still some problems need to be solved though there are a lot of achievements in the fields of automatic driving. One of those problems is the difficulty of designing a car-following decision-making system for complex traffic conditions. In recent years, reinforcement learning shows the potential in solving sequential decision optimization problems. In this article, we establish the reward function R of each driver data based on the inverse reinforcement learning algorithm, and r visualization is carried out, and then driving characteristics and following strategies are analyzed. At last, we show the efficiency of the proposed method by simulation in a highway environment.


Author(s):  
Stuart Armstrong ◽  
Jan Leike ◽  
Laurent Orseau ◽  
Shane Legg

In some agent designs like inverse reinforcement learning an agent needs to learn its own reward function. Learning the reward function and optimising for it are typically two different processes, usually performed at different stages. We consider a continual (``one life'') learning approach where the agent both learns the reward function and optimises for it at the same time. We show that this comes with a number of pitfalls, such as deliberately manipulating the learning process in one direction, refusing to learn, ``learning'' facts already known to the agent, and making decisions that are strictly dominated (for all relevant reward functions). We formally introduce two desirable properties: the first is `unriggability', which prevents the agent from steering the learning process in the direction of a reward function that is easier to optimise. The second is `uninfluenceability', whereby the reward-function learning process operates by learning facts about the environment. We show that an uninfluenceable process is automatically unriggable, and if the set of possible environments is sufficiently large, the converse is true too.


2021 ◽  
Author(s):  
Stav Belogolovsky ◽  
Philip Korsunsky ◽  
Shie Mannor ◽  
Chen Tessler ◽  
Tom Zahavy

AbstractWe consider the task of Inverse Reinforcement Learning in Contextual Markov Decision Processes (MDPs). In this setting, contexts, which define the reward and transition kernel, are sampled from a distribution. In addition, although the reward is a function of the context, it is not provided to the agent. Instead, the agent observes demonstrations from an optimal policy. The goal is to learn the reward mapping, such that the agent will act optimally even when encountering previously unseen contexts, also known as zero-shot transfer. We formulate this problem as a non-differential convex optimization problem and propose a novel algorithm to compute its subgradients. Based on this scheme, we analyze several methods both theoretically, where we compare the sample complexity and scalability, and empirically. Most importantly, we show both theoretically and empirically that our algorithms perform zero-shot transfer (generalize to new and unseen contexts). Specifically, we present empirical experiments in a dynamic treatment regime, where the goal is to learn a reward function which explains the behavior of expert physicians based on recorded data of them treating patients diagnosed with sepsis.


2021 ◽  
Author(s):  
Amarildo Likmeta ◽  
Alberto Maria Metelli ◽  
Giorgia Ramponi ◽  
Andrea Tirinzoni ◽  
Matteo Giuliani ◽  
...  

AbstractIn real-world applications, inferring the intentions of expert agents (e.g., human operators) can be fundamental to understand how possibly conflicting objectives are managed, helping to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforcement learning (IRL) can be employed to retrieve the reward function implicitly optimized by expert agents acting in real applications. Scaling IRL to real-world cases has proved challenging as typically only a fixed dataset of demonstrations is available and further interactions with the environment are not allowed. For this reason, we resort to a class of truly batch model-free IRL algorithms and we present three application scenarios: (1) the high-level decision-making problem in the highway driving scenario, and (2) inferring the user preferences in a social network (Twitter), and (3) the management of the water release in the Como Lake. For each of these scenarios, we provide formalization, experiments and a discussion to interpret the obtained results.


Author(s):  
Feng Pan ◽  
Hong Bao

This paper proposes a new approach of using reinforcement learning (RL) to train an agent to perform the task of vehicle following with human driving characteristics. We refer to the ideal of inverse reinforcement learning to design the reward function of the RL model. The factors that need to be weighed in vehicle following were vectorized into reward vectors, and the reward function was defined as the inner product of the reward vector and weights. Driving data of human drivers was collected and analyzed to obtain the true reward function. The RL model was trained with the deterministic policy gradient algorithm because the state and action spaces are continuous. We adjusted the weight vector of the reward function so that the value vector of the RL model could continuously approach that of a human driver. After dozens of rounds of training, we selected the policy with the nearest value vector to that of a human driver and tested it in the PanoSim simulation environment. The results showed the desired performance for the task of an agent following the preceding vehicle safely and smoothly.


Author(s):  
Fangjian Li ◽  
John R Wagner ◽  
Yue Wang

Abstract Inverse reinforcement learning (IRL) has been successfully applied in many robotics and autonomous driving studies without the need for hand-tuning a reward function. However, it suffers from safety issues. Compared to the reinforcement learning (RL) algorithms, IRL is even more vulnerable to unsafe situations as it can only infer the importance of safety based on expert demonstrations. In this paper, we propose a safety-aware adversarial inverse reinforcement learning algorithm (S-AIRL). First, the control barrier function (CBF) is used to guide the training of a safety critic, which leverages the knowledge of system dynamics in the sampling process without training an additional guiding policy. The trained safety critic is then integrated into the discriminator to help discern the generated data and expert demonstrations from the standpoint of safety. Finally, to further improve the safety awareness, a regulator is introduced in the loss function of the discriminator training to prevent the recovered reward function from assigning high rewards to the risky behaviors. We tested our S-AIRL in the highway autonomous driving scenario. Comparing to the original AIRL algorithm, with the same level of imitation learning (IL) performance, the proposed S-AIRL can reduce the collision rate by 32.6%.


Sign in / Sign up

Export Citation Format

Share Document