scholarly journals Preliminary Study on Siltation in Pussur Navigation Channel with Regulating Structure

2021 ◽  
Author(s):  
Weisheng Zhang ◽  
Motiur Rahman ◽  
Huisheng Li ◽  
Aixing Ma ◽  
Md Shahjahan Ali ◽  
...  

In view of the serious problem of siltation rate in Waterway Engineering, feasibility of the scheme is studied from the perspective of sedimentation on Pussur River of Bangladesh in this paper. Based on the analysis of the tide, sediment and topography of the waterway and numerical simulation, the characteristics of the flow movement in the project reach, the influence of the dredging channel on the flow and the siltation were analyzed. With the excavation of channel, due to the influence of dynamic changes and elevation difference, the siltation of the channel is about 0.70–1.79m/a near Inner Bar area, and is more severely in the upper section near Chalna. The implementation of the preliminary regulating structure can increase the velocity and reduce the siltation of the local section. Yet the siltation of the upstream and downstream sections may be added due to changes of flow with the structure. The further scheme should be optimized from the angle of increasing the velocity in channel and reducing the influence to upstream and downstream. The feasibility results can provide scientific basis for the design and construction departments.

2013 ◽  
Vol 353-356 ◽  
pp. 692-695
Author(s):  
Chang Zhi Zhu ◽  
Quan Chen Gao

Based on an Engineering Example which was supported by the stepped soil-nail wall, a numerical analysis model was established by FLAC3D,and the process of the excavation and supporting was simulated, and the numerical results of the soil nails internal force and foundation pit deformation were obtained. The simulated result was consistent with the measured results. It shows that the method of FLAC3D numerical analysis can be used to the numerical analysis of foundation pit excavation and supporting, and it will provide the basis for the design and construction of practice project.


1991 ◽  
Vol 7 ◽  
pp. 295-300
Author(s):  
Tutu Awaragi ◽  
Ichiro Degechi ◽  
Masanobu Ono ◽  
Kisung Bae

2020 ◽  
Vol 24 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Pu Wang ◽  
Lishuai Jiang ◽  
Changqing Ma ◽  
Anying Yuan

The study of evolution laws of the mining-induced stress in floor strata affected by overhead mining is extremely important with respect to the stability and support of a floor roadway. Based on the geological conditions of the drainage roadway in the 10th district in a coalmine, a mechanical model of a working face for overhead mining over the roadway is established, and the laws influencing mining stress on the roadway in different layers are obtained. The evolution of mining stress in floor with different horizontal distances between the working face and the floor roadway that is defined as LD are examined by utilizing UDEC numerical simulation, and the stability of roadway is analyzed. The results of the numerical simulation are verified via on-site tests of the deformation of the surrounding rocks and bolts pull-out from the drainage roadway. The results indicate that the mining stress in floor is high, which decreases slowly within a depth of less than 40 m where the floor roadway is significantly affected. The mining stress in the floor increases gradually, and the effect of the mining on the roadway is particularly evident within 0 m ≤ LD ≤ 40 m. Although the floor roadway is in a stress-relaxed state, the worst stability of the surrounding rocks is observed during the range -20 m ≤ LD < 0 m, in which the negative value indicates that the working face has passed the roadway. The roadway is affected by the recovery of the abutment stress in the goaf when -60 m ≤ LD <20 m, and thus it is important to focus on the strengthening support. The results may provide a scientific basis for establishing a reasonable location and support of roadways under similar conditions.


2013 ◽  
Vol 864-867 ◽  
pp. 2027-2030
Author(s):  
Shan Shan Lu ◽  
Hua Li ◽  
Hui Chao Dai ◽  
Quan Lin Ding

Falling-sill bottom-flow dissipation is an important energy dissipater way, which has two fluent characteristics, spatial 3D hydraulic jump and submerge jet. But the turbulent motion is strong with a flow pattern of complex level. It is hard to detail the hydraulic characteristics and strength being inside of the plunge pool using physical experiments. However, numerical simulation can match the deficiency of physical model, which has the access to detail flow field hydraulic characteristics and provide a strong scientific basis on analyzing the hydrodynamic and hydraulic characteristics of plunge pool. In this paper, XJB project is taken for example, gas-liquid two-phase flow tracking the simulation free surface of VOF model was used. The RNG κ_ε turbulent motion model is adequate to simulate the 3D flow field in plunge pool. The result shows that the consequence of numerical simulation and physic test match well, which can reflect the plunge pool hydraulic characteristics and dissipation process accurately. The distribution of flow speed inside the plunge pool locates the position of main flow and reflects the velocity decay along the way and reflux flow vortex .


2011 ◽  
Vol 314-316 ◽  
pp. 594-598
Author(s):  
Min Xiao ◽  
Xue Dao Shu

Blank shape design is the prerequisite and foundation of optimization for the closed forming the high-neck flange. This paper obtained the design formulas of blank size with analyzing the mathematical model of flank blank based on the principle of volume invariably during the rolling process.The blank of a special flange was designed by this method which was validated by the numerical simulation under the DEFORM software. The results indicate that the product is qualified with the blank shape based on this method. These research conclusions can provide scientific basis for forming the high-neck flange with rolling method.


2014 ◽  
Vol 638-640 ◽  
pp. 507-511
Author(s):  
Chong Ma ◽  
Xin Gang Wang ◽  
Bin Hu ◽  
Hong Bing Zhan

The rapid development of deep foundation pit engineering, has become an important part of the urbanization construction, which brings deep excavation support of geotechnical engineering problem research also became a major issue. This paper uses the international well-known geotechnical engineering numerical simulation software FLAC3D, through 3D finite difference numerical calculation and analysis, to better simulation calculation and analysis of deep foundation pit construction site condition, forecast after excavation of the deep foundation pit deformation displacement and dangerous position, analysis of deep foundation pit excavation process isolation pile - steel shotcrete combined support effect. Three dimensional numerical model analysis and calculation in deep foundation pit engineering design and construction scheme optimization with economy is convenient wait for a obvious advantages, can for deep foundation pit excavation of deep foundation pit support design and construction to provide effective basis.


Sign in / Sign up

Export Citation Format

Share Document